|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torchvision.models as models |
|
|
from torchvision.models import ResNet50_Weights |
|
|
import numpy as np |
|
|
from torchvision import transforms |
|
|
|
|
|
class CustomResNet(nn.Module): |
|
|
def __init__(self): |
|
|
super(CustomResNet, self).__init__() |
|
|
if torch.cuda.is_available(): |
|
|
self.device = 'cuda' |
|
|
elif torch.backends.mps.is_available(): |
|
|
self.device = 'mps' |
|
|
else: |
|
|
self.device = 'cpu' |
|
|
|
|
|
self.transform = transforms.Compose([ |
|
|
transforms.Resize((224, 224)), |
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
]) |
|
|
|
|
|
self.resnet = models.resnet50(weights=ResNet50_Weights.DEFAULT) |
|
|
|
|
|
|
|
|
self.resnet = nn.Sequential(*list(self.resnet.children())[:-1]) |
|
|
|
|
|
|
|
|
self.fc1 = nn.Linear(2 * (512 * 4), 256) |
|
|
self.fc2 = nn.Linear(256, 1) |
|
|
|
|
|
self.gradients = None |
|
|
|
|
|
def activations_hook(self, grad): |
|
|
self.gradients = grad |
|
|
|
|
|
def forward(self, x1, x2, Location): |
|
|
N = x1.shape[0] |
|
|
|
|
|
x1 = self.transform(x1.to(torch.float).to(self.device)) |
|
|
x2 = self.transform(x2.to(torch.float).to(self.device)) |
|
|
Location = Location.to(torch.float).to(self.device) |
|
|
|
|
|
|
|
|
f1 = self.resnet[:8](x1) |
|
|
h = f1.register_hook(self.activations_hook) |
|
|
f1 = self.resnet[8:](f1) |
|
|
f2 = self.resnet(x2) |
|
|
|
|
|
|
|
|
f1 = f1.view(f1.size(0), -1) |
|
|
f2 = f2.view(f2.size(0), -1) |
|
|
|
|
|
f_ad = f1*Location[:,0].reshape(N,1) + f2*Location[:,1].reshape(N,1) |
|
|
f_context = f1*(1-Location[:,0].reshape(N,1)) + f2*(1-Location[:,1].reshape(N,1)) |
|
|
|
|
|
|
|
|
combined = torch.cat((f_ad, f_context), dim=1) |
|
|
|
|
|
|
|
|
x = torch.relu(self.fc1(combined)) |
|
|
x = self.fc2(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def get_activations_gradient(self): |
|
|
return self.gradients |
|
|
|
|
|
|
|
|
def get_activations(self, x): |
|
|
x = self.transform(x.to(torch.float).to(self.device)) |
|
|
return self.resnet[:8](x) |