Spaces:
Paused
Paused
| from opensearchpy import OpenSearch | |
| from opensearchpy.helpers import bulk | |
| from typing import Optional | |
| from open_webui.retrieval.vector.main import ( | |
| VectorDBBase, | |
| VectorItem, | |
| SearchResult, | |
| GetResult, | |
| ) | |
| from open_webui.config import ( | |
| OPENSEARCH_URI, | |
| OPENSEARCH_SSL, | |
| OPENSEARCH_CERT_VERIFY, | |
| OPENSEARCH_USERNAME, | |
| OPENSEARCH_PASSWORD, | |
| ) | |
| class OpenSearchClient(VectorDBBase): | |
| def __init__(self): | |
| self.index_prefix = "open_webui" | |
| self.client = OpenSearch( | |
| hosts=[OPENSEARCH_URI], | |
| use_ssl=OPENSEARCH_SSL, | |
| verify_certs=OPENSEARCH_CERT_VERIFY, | |
| http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD), | |
| ) | |
| def _get_index_name(self, collection_name: str) -> str: | |
| return f"{self.index_prefix}_{collection_name}" | |
| def _result_to_get_result(self, result) -> GetResult: | |
| if not result["hits"]["hits"]: | |
| return None | |
| ids = [] | |
| documents = [] | |
| metadatas = [] | |
| for hit in result["hits"]["hits"]: | |
| ids.append(hit["_id"]) | |
| documents.append(hit["_source"].get("text")) | |
| metadatas.append(hit["_source"].get("metadata")) | |
| return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas]) | |
| def _result_to_search_result(self, result) -> SearchResult: | |
| if not result["hits"]["hits"]: | |
| return None | |
| ids = [] | |
| distances = [] | |
| documents = [] | |
| metadatas = [] | |
| for hit in result["hits"]["hits"]: | |
| ids.append(hit["_id"]) | |
| distances.append(hit["_score"]) | |
| documents.append(hit["_source"].get("text")) | |
| metadatas.append(hit["_source"].get("metadata")) | |
| return SearchResult( | |
| ids=[ids], | |
| distances=[distances], | |
| documents=[documents], | |
| metadatas=[metadatas], | |
| ) | |
| def _create_index(self, collection_name: str, dimension: int): | |
| body = { | |
| "settings": {"index": {"knn": True}}, | |
| "mappings": { | |
| "properties": { | |
| "id": {"type": "keyword"}, | |
| "vector": { | |
| "type": "knn_vector", | |
| "dimension": dimension, # Adjust based on your vector dimensions | |
| "index": True, | |
| "similarity": "faiss", | |
| "method": { | |
| "name": "hnsw", | |
| "space_type": "innerproduct", # Use inner product to approximate cosine similarity | |
| "engine": "faiss", | |
| "parameters": { | |
| "ef_construction": 128, | |
| "m": 16, | |
| }, | |
| }, | |
| }, | |
| "text": {"type": "text"}, | |
| "metadata": {"type": "object"}, | |
| } | |
| }, | |
| } | |
| self.client.indices.create( | |
| index=self._get_index_name(collection_name), body=body | |
| ) | |
| def _create_batches(self, items: list[VectorItem], batch_size=100): | |
| for i in range(0, len(items), batch_size): | |
| yield items[i : i + batch_size] | |
| def has_collection(self, collection_name: str) -> bool: | |
| # has_collection here means has index. | |
| # We are simply adapting to the norms of the other DBs. | |
| return self.client.indices.exists(index=self._get_index_name(collection_name)) | |
| def delete_collection(self, collection_name: str): | |
| # delete_collection here means delete index. | |
| # We are simply adapting to the norms of the other DBs. | |
| self.client.indices.delete(index=self._get_index_name(collection_name)) | |
| def search( | |
| self, collection_name: str, vectors: list[list[float | int]], limit: int | |
| ) -> Optional[SearchResult]: | |
| try: | |
| if not self.has_collection(collection_name): | |
| return None | |
| query = { | |
| "size": limit, | |
| "_source": ["text", "metadata"], | |
| "query": { | |
| "script_score": { | |
| "query": {"match_all": {}}, | |
| "script": { | |
| "source": "(cosineSimilarity(params.query_value, doc[params.field]) + 1.0) / 2.0", | |
| "params": { | |
| "field": "vector", | |
| "query_value": vectors[0], | |
| }, # Assuming single query vector | |
| }, | |
| } | |
| }, | |
| } | |
| result = self.client.search( | |
| index=self._get_index_name(collection_name), body=query | |
| ) | |
| return self._result_to_search_result(result) | |
| except Exception as e: | |
| return None | |
| def query( | |
| self, collection_name: str, filter: dict, limit: Optional[int] = None | |
| ) -> Optional[GetResult]: | |
| if not self.has_collection(collection_name): | |
| return None | |
| query_body = { | |
| "query": {"bool": {"filter": []}}, | |
| "_source": ["text", "metadata"], | |
| } | |
| for field, value in filter.items(): | |
| query_body["query"]["bool"]["filter"].append( | |
| {"match": {"metadata." + str(field): value}} | |
| ) | |
| size = limit if limit else 10 | |
| try: | |
| result = self.client.search( | |
| index=self._get_index_name(collection_name), | |
| body=query_body, | |
| size=size, | |
| ) | |
| return self._result_to_get_result(result) | |
| except Exception as e: | |
| return None | |
| def _create_index_if_not_exists(self, collection_name: str, dimension: int): | |
| if not self.has_collection(collection_name): | |
| self._create_index(collection_name, dimension) | |
| def get(self, collection_name: str) -> Optional[GetResult]: | |
| query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]} | |
| result = self.client.search( | |
| index=self._get_index_name(collection_name), body=query | |
| ) | |
| return self._result_to_get_result(result) | |
| def insert(self, collection_name: str, items: list[VectorItem]): | |
| self._create_index_if_not_exists( | |
| collection_name=collection_name, dimension=len(items[0]["vector"]) | |
| ) | |
| for batch in self._create_batches(items): | |
| actions = [ | |
| { | |
| "_op_type": "index", | |
| "_index": self._get_index_name(collection_name), | |
| "_id": item["id"], | |
| "_source": { | |
| "vector": item["vector"], | |
| "text": item["text"], | |
| "metadata": item["metadata"], | |
| }, | |
| } | |
| for item in batch | |
| ] | |
| bulk(self.client, actions) | |
| def upsert(self, collection_name: str, items: list[VectorItem]): | |
| self._create_index_if_not_exists( | |
| collection_name=collection_name, dimension=len(items[0]["vector"]) | |
| ) | |
| for batch in self._create_batches(items): | |
| actions = [ | |
| { | |
| "_op_type": "update", | |
| "_index": self._get_index_name(collection_name), | |
| "_id": item["id"], | |
| "doc": { | |
| "vector": item["vector"], | |
| "text": item["text"], | |
| "metadata": item["metadata"], | |
| }, | |
| "doc_as_upsert": True, | |
| } | |
| for item in batch | |
| ] | |
| bulk(self.client, actions) | |
| def delete( | |
| self, | |
| collection_name: str, | |
| ids: Optional[list[str]] = None, | |
| filter: Optional[dict] = None, | |
| ): | |
| if ids: | |
| actions = [ | |
| { | |
| "_op_type": "delete", | |
| "_index": self._get_index_name(collection_name), | |
| "_id": id, | |
| } | |
| for id in ids | |
| ] | |
| bulk(self.client, actions) | |
| elif filter: | |
| query_body = { | |
| "query": {"bool": {"filter": []}}, | |
| } | |
| for field, value in filter.items(): | |
| query_body["query"]["bool"]["filter"].append( | |
| {"match": {"metadata." + str(field): value}} | |
| ) | |
| self.client.delete_by_query( | |
| index=self._get_index_name(collection_name), body=query_body | |
| ) | |
| def reset(self): | |
| indices = self.client.indices.get(index=f"{self.index_prefix}_*") | |
| for index in indices: | |
| self.client.indices.delete(index=index) | |