Spaces:
Runtime error
Runtime error
Create DF.py
Browse files
DF.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from diffusers import WanPipeline, AutoencoderKLWan
|
| 6 |
+
from diffusers.utils import export_to_video
|
| 7 |
+
from dfloat11 import DFloat11Model
|
| 8 |
+
import spaces
|
| 9 |
+
import uuid
|
| 10 |
+
|
| 11 |
+
# Set environment variables
|
| 12 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
| 13 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 14 |
+
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
|
| 15 |
+
|
| 16 |
+
# Ensure this runs on CPU or ZeroGPU
|
| 17 |
+
@spaces.GPU(enable_queue=True)
|
| 18 |
+
def generate_video(prompt, negative_prompt, width, height, num_frames,
|
| 19 |
+
guidance_scale, guidance_scale_2, num_inference_steps, fps):
|
| 20 |
+
torch.cuda.empty_cache()
|
| 21 |
+
start_time = time.time()
|
| 22 |
+
|
| 23 |
+
# Load model
|
| 24 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 25 |
+
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
|
| 26 |
+
subfolder="vae",
|
| 27 |
+
torch_dtype=torch.float32
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
pipe = WanPipeline.from_pretrained(
|
| 31 |
+
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
|
| 32 |
+
vae=vae,
|
| 33 |
+
torch_dtype=torch.bfloat16
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Load DFloat11 optimization layers
|
| 37 |
+
DFloat11Model.from_pretrained(
|
| 38 |
+
"DFloat11/Wan2.2-T2V-A14B-DF11",
|
| 39 |
+
device="cpu",
|
| 40 |
+
cpu_offload=True,
|
| 41 |
+
bfloat16_model=pipe.transformer,
|
| 42 |
+
)
|
| 43 |
+
DFloat11Model.from_pretrained(
|
| 44 |
+
"DFloat11/Wan2.2-T2V-A14B-2-DF11",
|
| 45 |
+
device="cpu",
|
| 46 |
+
cpu_offload=True,
|
| 47 |
+
bfloat16_model=pipe.transformer_2,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
pipe.enable_model_cpu_offload()
|
| 51 |
+
|
| 52 |
+
# Run inference
|
| 53 |
+
result = pipe(
|
| 54 |
+
prompt=prompt,
|
| 55 |
+
negative_prompt=negative_prompt,
|
| 56 |
+
height=height,
|
| 57 |
+
width=width,
|
| 58 |
+
num_frames=num_frames,
|
| 59 |
+
guidance_scale=guidance_scale,
|
| 60 |
+
guidance_scale_2=guidance_scale_2,
|
| 61 |
+
num_inference_steps=num_inference_steps,
|
| 62 |
+
).frames[0]
|
| 63 |
+
|
| 64 |
+
output_path = f"/tmp/video_{uuid.uuid4().hex}.mp4"
|
| 65 |
+
export_to_video(result, output_path, fps=fps)
|
| 66 |
+
|
| 67 |
+
elapsed = time.time() - start_time
|
| 68 |
+
print(f"Video generated in {elapsed:.2f} seconds")
|
| 69 |
+
|
| 70 |
+
return output_path
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Gradio UI
|
| 74 |
+
with gr.Blocks() as demo:
|
| 75 |
+
gr.Markdown("## 🎥 Wan2.2 Text-to-Video Generator (ZeroGPU Ready)")
|
| 76 |
+
|
| 77 |
+
with gr.Row():
|
| 78 |
+
prompt = gr.Textbox(
|
| 79 |
+
label="Prompt",
|
| 80 |
+
value="A serene koi pond at night, with glowing lanterns reflecting on the rippling water. Ethereal fireflies dance above as cherry blossoms gently fall.",
|
| 81 |
+
lines=3
|
| 82 |
+
)
|
| 83 |
+
negative_prompt = gr.Textbox(
|
| 84 |
+
label="Negative Prompt",
|
| 85 |
+
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
|
| 86 |
+
lines=3
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
with gr.Row():
|
| 90 |
+
width = gr.Slider(256, 1280, value=768, step=64, label="Width")
|
| 91 |
+
height = gr.Slider(256, 720, value=432, step=64, label="Height")
|
| 92 |
+
num_frames = gr.Slider(8, 81, value=40, step=1, label="Number of Frames")
|
| 93 |
+
fps = gr.Slider(8, 30, value=16, step=1, label="FPS")
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.1, label="Guidance Scale")
|
| 97 |
+
guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="Guidance Scale 2")
|
| 98 |
+
num_inference_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps")
|
| 99 |
+
|
| 100 |
+
with gr.Row():
|
| 101 |
+
btn = gr.Button("🎬 Generate Video")
|
| 102 |
+
output_video = gr.Video(label="Generated Video")
|
| 103 |
+
|
| 104 |
+
btn.click(
|
| 105 |
+
generate_video,
|
| 106 |
+
inputs=[prompt, negative_prompt, width, height, num_frames, guidance_scale, guidance_scale_2, num_inference_steps, fps],
|
| 107 |
+
outputs=[output_video]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Launch Gradio app
|
| 111 |
+
demo.launch()
|