Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| # | |
| # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
| # | |
| # See LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # References: | |
| # https://gradio.app/docs/#dropdown | |
| import os | |
| import time | |
| from datetime import datetime | |
| import gradio as gr | |
| import torchaudio | |
| from model import get_pretrained_model, language_to_models, sample_rate | |
| languages = sorted(language_to_models.keys()) | |
| def convert_to_wav(in_filename: str) -> str: | |
| """Convert the input audio file to a wave file""" | |
| out_filename = in_filename + ".wav" | |
| print(f"Converting '{in_filename}' to '{out_filename}'") | |
| _ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' '{out_filename}'") | |
| return out_filename | |
| def process( | |
| in_filename: str, | |
| language: str, | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> str: | |
| print("in_filename", in_filename) | |
| print("language", language) | |
| print("repo_id", repo_id) | |
| print("decoding_method", decoding_method) | |
| print("num_active_paths", num_active_paths) | |
| filename = convert_to_wav(in_filename) | |
| now = datetime.now() | |
| date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
| print(f"Started at {date_time}") | |
| start = time.time() | |
| wave, wave_sample_rate = torchaudio.load(filename) | |
| if wave_sample_rate != sample_rate: | |
| print( | |
| f"Expected sample rate: {sample_rate}. Given: {wave_sample_rate}. " | |
| f"Resampling to {sample_rate}." | |
| ) | |
| wave = torchaudio.functional.resample( | |
| wave, | |
| orig_freq=wave_sample_rate, | |
| new_freq=sample_rate, | |
| ) | |
| wave = wave[0] # use only the first channel. | |
| hyp = get_pretrained_model(repo_id).decode_waves( | |
| [wave], | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| )[0] | |
| date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
| end = time.time() | |
| duration = wave.shape[0] / sample_rate | |
| rtf = (end - start) / duration | |
| print(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
| print(f"Duration {duration: .3f} s") | |
| print(f"RTF {rtf: .3f}") | |
| print("hyp") | |
| print(hyp) | |
| html_output = f""" | |
| <div class='result'> | |
| <div class='result_item result_item_success'> | |
| {hyp} | |
| <br/> | |
| </div> | |
| </div> | |
| """ | |
| return html_output | |
| title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
| description = """ | |
| This space shows how to do automatic speech recognition with Next-gen Kaldi. | |
| See more information by visiting the following links: | |
| - <https://github.com/k2-fsa/icefall> | |
| - <https://github.com/k2-fsa/sherpa> | |
| - <https://github.com/k2-fsa/k2> | |
| - <https://github.com/lhotse-speech/lhotse> | |
| """ | |
| def update_model_dropdown(language: str): | |
| if language in language_to_models: | |
| choices = language_to_models[language] | |
| return gr.Dropdown.update(choices=choices, value=choices[0]) | |
| raise ValueError(f"Unsupported language: {language}") | |
| # The css style is copied from | |
| # https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L112 | |
| demo = gr.Blocks( | |
| css=""" | |
| .result {display:flex;flex-direction:column} | |
| .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
| .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
| .result_item_error {background-color:#ff7070;color:white;align-self:start} | |
| """, | |
| ) | |
| with demo: | |
| gr.Markdown(title) | |
| language_choices = list(language_to_models.keys()) | |
| language_radio = gr.Radio( | |
| label="Language", | |
| choices=language_choices, | |
| value=language_choices[0], | |
| ) | |
| model_dropdown = gr.Dropdown( | |
| choices=language_to_models[language_choices[0]], | |
| label="Select a model", | |
| value=language_to_models[language_choices[0]][0], | |
| ) | |
| language_radio.change( | |
| update_model_dropdown, | |
| inputs=language_radio, | |
| outputs=model_dropdown, | |
| ) | |
| decoding_method_radio = gr.Radio( | |
| label="Decoding method", | |
| choices=["greedy_search", "modified_beam_search"], | |
| value="greedy_search", | |
| ) | |
| num_active_paths_slider = gr.Slider( | |
| minimum=1, | |
| value=4, | |
| step=1, | |
| label="Number of active paths for modified_beam_search", | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("Upload from disk"): | |
| uploaded_file = gr.Audio( | |
| source="upload", # Choose between "microphone", "upload" | |
| type="filepath", | |
| optional=False, | |
| label="Upload from disk", | |
| ) | |
| uploaded_output = gr.HTML(label="Recognized speech from uploaded file") | |
| upload_button = gr.Button("Submit for recognition") | |
| with gr.TabItem("Record from microphone"): | |
| microphone = gr.Audio( | |
| source="microphone", # Choose between "microphone", "upload" | |
| type="filepath", | |
| optional=False, | |
| label="Record from microphone", | |
| ) | |
| record_button = gr.Button("Submit for recognition") | |
| recorded_output = gr.HTML(label="Recognized speech from recordings") | |
| upload_button.click( | |
| process, | |
| inputs=[ | |
| uploaded_file, | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| ], | |
| outputs=uploaded_output, | |
| ) | |
| record_button.click( | |
| process, | |
| inputs=[ | |
| microphone, | |
| language_radio, | |
| model_dropdown, | |
| decoding_method_radio, | |
| num_active_paths_slider, | |
| ], | |
| outputs=recorded_output, | |
| ) | |
| gr.Markdown(description) | |
| if __name__ == "__main__": | |
| demo.launch() | |