Spaces:
Runtime error
Runtime error
Vivien Chappelier
commited on
Commit
Β·
73c438e
1
Parent(s):
125c82c
add option for proxy model
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import numpy as np
|
|
| 7 |
|
| 8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 9 |
|
|
|
|
| 10 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 11 |
import torchvision.transforms as transforms
|
| 12 |
|
|
@@ -42,6 +43,11 @@ class BZHStableSignatureDemo(object):
|
|
| 42 |
|
| 43 |
self.decoders = decoders
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def generate(self, mode, seed, prompt):
|
| 46 |
generator = torch.Generator(device=device)
|
| 47 |
torch.manual_seed(seed)
|
|
@@ -91,12 +97,16 @@ class BZHStableSignatureDemo(object):
|
|
| 91 |
# JPEG attack
|
| 92 |
mf = io.BytesIO()
|
| 93 |
img.save(mf, format='JPEG', quality=jpeg_compression)
|
|
|
|
| 94 |
mf.seek(0)
|
| 95 |
img = Image.open(mf)
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
def
|
| 100 |
# send to detection API and apply JPEG compression attack
|
| 101 |
mf = io.BytesIO()
|
| 102 |
img.save(mf, format='PNG')
|
|
@@ -115,6 +125,22 @@ class BZHStableSignatureDemo(object):
|
|
| 115 |
data = response.json()
|
| 116 |
pvalue = data['p-value']
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
result = "No watermark detected."
|
| 119 |
rpv = 10**int(math.log10(pvalue))
|
| 120 |
if pvalue < 1e-3:
|
|
@@ -165,18 +191,22 @@ def interface():
|
|
| 165 |
btn2 = gr.Button("Edit")
|
| 166 |
with gr.Row():
|
| 167 |
attacked_image = gr.Image(type="pil", width=512, sources=['upload', 'clipboard'])
|
|
|
|
|
|
|
| 168 |
|
| 169 |
gr.Markdown("""## 3. Detect
|
| 170 |
Detect the watermark on the altered image. Watermark may not be detected if the image is altered too strongly.
|
|
|
|
| 171 |
""")
|
| 172 |
with gr.Row():
|
|
|
|
| 173 |
btn3 = gr.Button("Detect")
|
| 174 |
with gr.Row():
|
| 175 |
-
detection_label = gr.Label(label="Detection info"
|
| 176 |
|
| 177 |
btn1.click(fn=backend.generate, inputs=[mode, seed, inp], outputs=[watermarked_image], api_name="generate")
|
| 178 |
-
btn2.click(fn=backend.attack, inputs=[watermarked_image, jpeg_compression, downscale, crop, saturation, brightness, contrast], outputs=[attacked_image], api_name="attack")
|
| 179 |
-
btn3.click(fn=backend.detect, inputs=[attacked_image], outputs=[detection_label], api_name="detect")
|
| 180 |
|
| 181 |
return demo
|
| 182 |
|
|
|
|
| 7 |
|
| 8 |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 9 |
|
| 10 |
+
from transformers import AutoModel, BlipImageProcessor
|
| 11 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 12 |
import torchvision.transforms as transforms
|
| 13 |
|
|
|
|
| 43 |
|
| 44 |
self.decoders = decoders
|
| 45 |
|
| 46 |
+
# load the proxy detector
|
| 47 |
+
self.detector_image_processor = BlipImageProcessor.from_pretrained("imatag/stable-signature-bzh-detector-resnet18")
|
| 48 |
+
commit_hash = "584a7bc01dc0f02e53bf8b8b295717ed09ed7294"
|
| 49 |
+
self.detector_model = AutoModel.from_pretrained("imatag/stable-signature-bzh-detector-resnet18", trust_remote_code=True, revision=commit_hash)
|
| 50 |
+
|
| 51 |
def generate(self, mode, seed, prompt):
|
| 52 |
generator = torch.Generator(device=device)
|
| 53 |
torch.manual_seed(seed)
|
|
|
|
| 97 |
# JPEG attack
|
| 98 |
mf = io.BytesIO()
|
| 99 |
img.save(mf, format='JPEG', quality=jpeg_compression)
|
| 100 |
+
filesize = mf.tell()
|
| 101 |
mf.seek(0)
|
| 102 |
img = Image.open(mf)
|
| 103 |
|
| 104 |
+
image_info = "resolution: %dx%d" % img.size
|
| 105 |
+
image_info += " JPEG file size: %d" % filesize
|
| 106 |
+
|
| 107 |
+
return img, image_info
|
| 108 |
|
| 109 |
+
def detect_api(self, img):
|
| 110 |
# send to detection API and apply JPEG compression attack
|
| 111 |
mf = io.BytesIO()
|
| 112 |
img.save(mf, format='PNG')
|
|
|
|
| 125 |
data = response.json()
|
| 126 |
pvalue = data['p-value']
|
| 127 |
|
| 128 |
+
return pvalue
|
| 129 |
+
|
| 130 |
+
def detect_proxy(self, img):
|
| 131 |
+
img = img.convert("RGB")
|
| 132 |
+
inputs = self.detector_image_processor(img, return_tensors="pt")
|
| 133 |
+
|
| 134 |
+
with torch.no_grad():
|
| 135 |
+
pvalue = torch.sigmoid(self.detector_model(**inputs).logits).item()
|
| 136 |
+
|
| 137 |
+
return pvalue
|
| 138 |
+
|
| 139 |
+
def detect(self, img, detection_method):
|
| 140 |
+
if detection_method == "API":
|
| 141 |
+
pvalue = self.detect_api(img)
|
| 142 |
+
else:
|
| 143 |
+
pvalue = self.detect_proxy(img)
|
| 144 |
result = "No watermark detected."
|
| 145 |
rpv = 10**int(math.log10(pvalue))
|
| 146 |
if pvalue < 1e-3:
|
|
|
|
| 191 |
btn2 = gr.Button("Edit")
|
| 192 |
with gr.Row():
|
| 193 |
attacked_image = gr.Image(type="pil", width=512, sources=['upload', 'clipboard'])
|
| 194 |
+
with gr.Row():
|
| 195 |
+
image_info_label = gr.Label(label="Image info")
|
| 196 |
|
| 197 |
gr.Markdown("""## 3. Detect
|
| 198 |
Detect the watermark on the altered image. Watermark may not be detected if the image is altered too strongly.
|
| 199 |
+
You may choose to detect with our fast [proxy model](https://huggingface.co/imatag/stable-signature-bzh-detector-resnet18), or via API for improved robustness.
|
| 200 |
""")
|
| 201 |
with gr.Row():
|
| 202 |
+
detection_method = gr.Dropdown(choices=["proxy model", "API"], label="Detection method", value="proxy model")
|
| 203 |
btn3 = gr.Button("Detect")
|
| 204 |
with gr.Row():
|
| 205 |
+
detection_label = gr.Label(label="Detection info")
|
| 206 |
|
| 207 |
btn1.click(fn=backend.generate, inputs=[mode, seed, inp], outputs=[watermarked_image], api_name="generate")
|
| 208 |
+
btn2.click(fn=backend.attack, inputs=[watermarked_image, jpeg_compression, downscale, crop, saturation, brightness, contrast], outputs=[attacked_image, image_info_label], api_name="attack")
|
| 209 |
+
btn3.click(fn=backend.detect, inputs=[attacked_image, detection_method], outputs=[detection_label], api_name="detect")
|
| 210 |
|
| 211 |
return demo
|
| 212 |
|