Update main.py
Browse files
main.py
CHANGED
|
@@ -1,8 +1,37 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import os, sys
|
| 4 |
import random
|
| 5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def run_ollama_serve():
|
| 8 |
try:
|
|
@@ -15,353 +44,43 @@ def run_ollama_serve():
|
|
| 15 |
f"""
|
| 16 |
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
|
| 17 |
"""
|
| 18 |
-
)
|
| 19 |
|
| 20 |
def is_port_in_use(port):
|
| 21 |
import socket
|
| 22 |
|
| 23 |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 24 |
return s.connect_ex(("localhost", port)) == 0
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
host = "0.0.0.0",
|
| 28 |
-
port = 8000,
|
| 29 |
-
api_base = None,
|
| 30 |
-
api_version = "2023-07-01-preview",
|
| 31 |
-
model = None,
|
| 32 |
-
alias = None,
|
| 33 |
-
add_key = None,
|
| 34 |
-
headers = None,
|
| 35 |
-
save = False,
|
| 36 |
-
debug = False,
|
| 37 |
-
detailed_debug = False,
|
| 38 |
-
temperature = 0.0,
|
| 39 |
-
max_tokens = 1000,
|
| 40 |
-
request_timeout = 10,
|
| 41 |
-
drop_params = True,
|
| 42 |
-
add_function_to_prompt = True,
|
| 43 |
-
config = None,
|
| 44 |
-
max_budget = 100,
|
| 45 |
-
telemetry = False,
|
| 46 |
-
test = False,
|
| 47 |
-
local = False,
|
| 48 |
-
num_workers = 1,
|
| 49 |
-
test_async = False,
|
| 50 |
-
num_requests = 1,
|
| 51 |
-
use_queue = False,
|
| 52 |
-
health = False,
|
| 53 |
-
version = False,
|
| 54 |
-
):
|
| 55 |
-
global feature_telemetry
|
| 56 |
-
args = locals()
|
| 57 |
-
if local:
|
| 58 |
-
from proxy_server import app, save_worker_config, usage_telemetry
|
| 59 |
-
else:
|
| 60 |
-
try:
|
| 61 |
-
from .litellm.proxy.proxy_server import app, save_worker_config, usage_telemetry
|
| 62 |
-
except ImportError as e:
|
| 63 |
-
if "litellm[proxy]" in str(e):
|
| 64 |
-
# user is missing a proxy dependency, ask them to pip install litellm[proxy]
|
| 65 |
-
raise e
|
| 66 |
-
else:
|
| 67 |
-
# this is just a local/relative import error, user git cloned litellm
|
| 68 |
-
from proxy_server import app, save_worker_config, usage_telemetry
|
| 69 |
-
feature_telemetry = usage_telemetry
|
| 70 |
-
if version == True:
|
| 71 |
-
pkg_version = importlib.metadata.version("litellm")
|
| 72 |
-
click.echo(f"\nLiteLLM: Current Version = {pkg_version}\n")
|
| 73 |
-
return
|
| 74 |
-
if model and "ollama" in model and api_base is None:
|
| 75 |
run_ollama_serve()
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
llm_response = polling_response["result"]
|
| 103 |
-
break
|
| 104 |
-
print(
|
| 105 |
-
f"POLLING JOB{polling_url}\nSTATUS: {status}, \n Response {polling_response}"
|
| 106 |
-
) # noqa
|
| 107 |
-
time.sleep(0.5)
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print("got exception in polling", e)
|
| 110 |
-
break
|
| 111 |
-
|
| 112 |
-
# Number of concurrent calls (you can adjust this)
|
| 113 |
-
concurrent_calls = num_requests
|
| 114 |
-
|
| 115 |
-
# List to store the futures of concurrent calls
|
| 116 |
-
futures = []
|
| 117 |
-
start_time = time.time()
|
| 118 |
-
# Make concurrent calls
|
| 119 |
-
with concurrent.futures.ThreadPoolExecutor(
|
| 120 |
-
max_workers=concurrent_calls
|
| 121 |
-
) as executor:
|
| 122 |
-
for _ in range(concurrent_calls):
|
| 123 |
-
futures.append(executor.submit(_make_openai_completion))
|
| 124 |
-
|
| 125 |
-
# Wait for all futures to complete
|
| 126 |
-
concurrent.futures.wait(futures)
|
| 127 |
-
|
| 128 |
-
# Summarize the results
|
| 129 |
-
successful_calls = 0
|
| 130 |
-
failed_calls = 0
|
| 131 |
-
|
| 132 |
-
for future in futures:
|
| 133 |
-
if future.done():
|
| 134 |
-
if future.result() is not None:
|
| 135 |
-
successful_calls += 1
|
| 136 |
-
else:
|
| 137 |
-
failed_calls += 1
|
| 138 |
-
end_time = time.time()
|
| 139 |
-
print(f"Elapsed Time: {end_time-start_time}")
|
| 140 |
-
print(f"Load test Summary:")
|
| 141 |
-
print(f"Total Requests: {concurrent_calls}")
|
| 142 |
-
print(f"Successful Calls: {successful_calls}")
|
| 143 |
-
print(f"Failed Calls: {failed_calls}")
|
| 144 |
-
return
|
| 145 |
-
if health != False:
|
| 146 |
-
import requests
|
| 147 |
-
|
| 148 |
-
print("\nLiteLLM: Health Testing models in config")
|
| 149 |
-
response = requests.get(url=f"http://{host}:{port}/health")
|
| 150 |
-
print(json.dumps(response.json(), indent=4))
|
| 151 |
-
return
|
| 152 |
-
if test != False:
|
| 153 |
-
request_model = model or "gpt-3.5-turbo"
|
| 154 |
-
click.echo(
|
| 155 |
-
f"\nLiteLLM: Making a test ChatCompletions request to your proxy. Model={request_model}"
|
| 156 |
-
)
|
| 157 |
-
import openai
|
| 158 |
-
|
| 159 |
-
if test == True: # flag value set
|
| 160 |
-
api_base = f"http://{host}:{port}"
|
| 161 |
-
else:
|
| 162 |
-
api_base = test
|
| 163 |
-
client = openai.OpenAI(api_key="My API Key", base_url=api_base)
|
| 164 |
-
|
| 165 |
-
response = client.chat.completions.create(
|
| 166 |
-
model=request_model,
|
| 167 |
-
messages=[
|
| 168 |
-
{
|
| 169 |
-
"role": "user",
|
| 170 |
-
"content": "this is a test request, write a short poem",
|
| 171 |
-
}
|
| 172 |
-
],
|
| 173 |
-
max_tokens=256,
|
| 174 |
-
)
|
| 175 |
-
click.echo(f"\nLiteLLM: response from proxy {response}")
|
| 176 |
-
|
| 177 |
-
print(
|
| 178 |
-
f"\n LiteLLM: Making a test ChatCompletions + streaming request to proxy. Model={request_model}"
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
response = client.chat.completions.create(
|
| 182 |
-
model=request_model,
|
| 183 |
-
messages=[
|
| 184 |
-
{
|
| 185 |
-
"role": "user",
|
| 186 |
-
"content": "this is a test request, write a short poem",
|
| 187 |
-
}
|
| 188 |
-
],
|
| 189 |
-
stream=True,
|
| 190 |
-
)
|
| 191 |
-
for chunk in response:
|
| 192 |
-
click.echo(f"LiteLLM: streaming response from proxy {chunk}")
|
| 193 |
-
print("\n making completion request to proxy")
|
| 194 |
-
response = client.completions.create(
|
| 195 |
-
model=request_model, prompt="this is a test request, write a short poem"
|
| 196 |
-
)
|
| 197 |
-
print(response)
|
| 198 |
-
|
| 199 |
-
return
|
| 200 |
-
else:
|
| 201 |
-
if headers:
|
| 202 |
-
headers = json.loads(headers)
|
| 203 |
-
save_worker_config(
|
| 204 |
-
model=model,
|
| 205 |
-
alias=alias,
|
| 206 |
-
api_base=api_base,
|
| 207 |
-
api_version=api_version,
|
| 208 |
-
debug=debug,
|
| 209 |
-
detailed_debug=detailed_debug,
|
| 210 |
-
temperature=temperature,
|
| 211 |
-
max_tokens=max_tokens,
|
| 212 |
-
request_timeout=request_timeout,
|
| 213 |
-
max_budget=max_budget,
|
| 214 |
-
telemetry=telemetry,
|
| 215 |
-
drop_params=drop_params,
|
| 216 |
-
add_function_to_prompt=add_function_to_prompt,
|
| 217 |
-
headers=headers,
|
| 218 |
-
save=save,
|
| 219 |
-
config=config,
|
| 220 |
-
use_queue=use_queue,
|
| 221 |
-
)
|
| 222 |
-
try:
|
| 223 |
-
import uvicorn
|
| 224 |
-
|
| 225 |
-
if os.name == "nt":
|
| 226 |
-
pass
|
| 227 |
-
else:
|
| 228 |
-
import gunicorn.app.base
|
| 229 |
-
except:
|
| 230 |
-
raise ImportError(
|
| 231 |
-
"Uvicorn, gunicorn needs to be imported. Run - `pip 'litellm[proxy]'`"
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
if config is not None:
|
| 235 |
-
"""
|
| 236 |
-
Allow user to pass in db url via config
|
| 237 |
-
|
| 238 |
-
read from there and save it to os.env['DATABASE_URL']
|
| 239 |
-
"""
|
| 240 |
-
try:
|
| 241 |
-
import yaml
|
| 242 |
-
except:
|
| 243 |
-
raise ImportError(
|
| 244 |
-
"yaml needs to be imported. Run - `pip install 'litellm[proxy]'`"
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
if os.path.exists(config):
|
| 248 |
-
with open(config, "r") as config_file:
|
| 249 |
-
config = yaml.safe_load(config_file)
|
| 250 |
-
general_settings = config.get("general_settings", {})
|
| 251 |
-
database_url = general_settings.get("database_url", None)
|
| 252 |
-
if database_url and database_url.startswith("os.environ/"):
|
| 253 |
-
original_dir = os.getcwd()
|
| 254 |
-
# set the working directory to where this script is
|
| 255 |
-
sys.path.insert(
|
| 256 |
-
0, os.path.abspath("../..")
|
| 257 |
-
) # Adds the parent directory to the system path - for litellm local dev
|
| 258 |
-
import litellm
|
| 259 |
-
|
| 260 |
-
database_url = litellm.get_secret(database_url)
|
| 261 |
-
os.chdir(original_dir)
|
| 262 |
-
if database_url is not None and isinstance(database_url, str):
|
| 263 |
-
os.environ["DATABASE_URL"] = database_url
|
| 264 |
-
|
| 265 |
-
if os.getenv("DATABASE_URL", None) is not None:
|
| 266 |
-
try:
|
| 267 |
-
subprocess.run(["prisma"], capture_output=True)
|
| 268 |
-
is_prisma_runnable = True
|
| 269 |
-
except FileNotFoundError:
|
| 270 |
-
is_prisma_runnable = False
|
| 271 |
-
|
| 272 |
-
if is_prisma_runnable:
|
| 273 |
-
# run prisma db push, before starting server
|
| 274 |
-
# Save the current working directory
|
| 275 |
-
original_dir = os.getcwd()
|
| 276 |
-
# set the working directory to where this script is
|
| 277 |
-
abspath = os.path.abspath(__file__)
|
| 278 |
-
dname = os.path.dirname(abspath)
|
| 279 |
-
os.chdir(dname)
|
| 280 |
-
try:
|
| 281 |
-
subprocess.run(
|
| 282 |
-
["prisma", "db", "push", "--accept-data-loss"]
|
| 283 |
-
) # this looks like a weird edge case when prisma just wont start on render. we need to have the --accept-data-loss
|
| 284 |
-
finally:
|
| 285 |
-
os.chdir(original_dir)
|
| 286 |
-
else:
|
| 287 |
-
print(
|
| 288 |
-
f"Unable to connect to DB. DATABASE_URL found in environment, but prisma package not found."
|
| 289 |
-
)
|
| 290 |
-
if port == 8000 and is_port_in_use(port):
|
| 291 |
-
port = random.randint(1024, 49152)
|
| 292 |
-
from litellm.proxy.proxy_server import app
|
| 293 |
-
|
| 294 |
-
uvicorn.run(app, host=host, port=port) # run uvicorn
|
| 295 |
-
# if os.name == "nt":
|
| 296 |
-
# else:
|
| 297 |
-
# import gunicorn.app.base
|
| 298 |
-
|
| 299 |
-
# # Gunicorn Application Class
|
| 300 |
-
# class StandaloneApplication(gunicorn.app.base.BaseApplication):
|
| 301 |
-
# def __init__(self, app, options=None):
|
| 302 |
-
# self.options = options or {} # gunicorn options
|
| 303 |
-
# self.application = app # FastAPI app
|
| 304 |
-
# super().__init__()
|
| 305 |
-
|
| 306 |
-
# _endpoint_str = (
|
| 307 |
-
# f"curl --location 'http://0.0.0.0:{port}/chat/completions' \\"
|
| 308 |
-
# )
|
| 309 |
-
# curl_command = (
|
| 310 |
-
# _endpoint_str
|
| 311 |
-
# + """
|
| 312 |
-
# --header 'Content-Type: application/json' \\
|
| 313 |
-
# --data ' {
|
| 314 |
-
# "model": "gpt-3.5-turbo",
|
| 315 |
-
# "messages": [
|
| 316 |
-
# {
|
| 317 |
-
# "role": "user",
|
| 318 |
-
# "content": "what llm are you"
|
| 319 |
-
# }
|
| 320 |
-
# ]
|
| 321 |
-
# }'
|
| 322 |
-
# \n
|
| 323 |
-
# """
|
| 324 |
-
# )
|
| 325 |
-
# print() # noqa
|
| 326 |
-
# print( # noqa
|
| 327 |
-
# f'\033[1;34mLiteLLM: Test your local proxy with: "litellm --test" This runs an openai.ChatCompletion request to your proxy [In a new terminal tab]\033[0m\n'
|
| 328 |
-
# )
|
| 329 |
-
# print( # noqa
|
| 330 |
-
# f"\033[1;34mLiteLLM: Curl Command Test for your local proxy\n {curl_command} \033[0m\n"
|
| 331 |
-
# )
|
| 332 |
-
# print(
|
| 333 |
-
# "\033[1;34mDocs: https://docs.litellm.ai/docs/simple_proxy\033[0m\n"
|
| 334 |
-
# ) # noqa
|
| 335 |
-
# print( # noqa
|
| 336 |
-
# f"\033[1;34mSee all Router/Swagger docs on http://0.0.0.0:{port} \033[0m\n"
|
| 337 |
-
# ) # noqa
|
| 338 |
-
|
| 339 |
-
# def load_config(self):
|
| 340 |
-
# # note: This Loads the gunicorn config - has nothing to do with LiteLLM Proxy config
|
| 341 |
-
# config = {
|
| 342 |
-
# key: value
|
| 343 |
-
# for key, value in self.options.items()
|
| 344 |
-
# if key in self.cfg.settings and value is not None
|
| 345 |
-
# }
|
| 346 |
-
# for key, value in config.items():
|
| 347 |
-
# self.cfg.set(key.lower(), value)
|
| 348 |
-
|
| 349 |
-
# def load(self):
|
| 350 |
-
# # gunicorn app function
|
| 351 |
-
# return self.application
|
| 352 |
-
|
| 353 |
-
# gunicorn_options = {
|
| 354 |
-
# "bind": f"{host}:{port}",
|
| 355 |
-
# "workers": num_workers, # default is 1
|
| 356 |
-
# "worker_class": "uvicorn.workers.UvicornWorker",
|
| 357 |
-
# "preload": True, # Add the preload flag,
|
| 358 |
-
# "accesslog": "-", # Log to stdout
|
| 359 |
-
# "access_log_format": '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s',
|
| 360 |
-
# }
|
| 361 |
-
# StandaloneApplication(
|
| 362 |
-
# app=app, options=gunicorn_options
|
| 363 |
-
# ).run() # Run gunicorn
|
| 364 |
|
| 365 |
|
| 366 |
if __name__ == "__main__":
|
| 367 |
-
|
|
|
|
| 1 |
+
from litellm.proxy.proxy_server import app, save_worker_config
|
| 2 |
+
import uvicorn
|
|
|
|
| 3 |
import random
|
| 4 |
+
import subprocess, json
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
host = "0.0.0.0"
|
| 8 |
+
port = 8000
|
| 9 |
+
api_base = None
|
| 10 |
+
api_version = "2023-07-01-preview"
|
| 11 |
+
model = None
|
| 12 |
+
alias = None
|
| 13 |
+
add_key = None
|
| 14 |
+
headers = None
|
| 15 |
+
save = False
|
| 16 |
+
debug = False
|
| 17 |
+
detailed_debug = False
|
| 18 |
+
temperature = 0.0
|
| 19 |
+
max_tokens = 1000
|
| 20 |
+
request_timeout = 10
|
| 21 |
+
drop_params = True
|
| 22 |
+
add_function_to_prompt = True
|
| 23 |
+
config = None
|
| 24 |
+
max_budget = 100
|
| 25 |
+
telemetry = False
|
| 26 |
+
test = False
|
| 27 |
+
local = False
|
| 28 |
+
num_workers = 1
|
| 29 |
+
test_async = False
|
| 30 |
+
num_requests = 1
|
| 31 |
+
use_queue = False
|
| 32 |
+
health = False
|
| 33 |
+
version = False
|
| 34 |
+
|
| 35 |
|
| 36 |
def run_ollama_serve():
|
| 37 |
try:
|
|
|
|
| 44 |
f"""
|
| 45 |
LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve`
|
| 46 |
"""
|
| 47 |
+
)
|
| 48 |
|
| 49 |
def is_port_in_use(port):
|
| 50 |
import socket
|
| 51 |
|
| 52 |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
| 53 |
return s.connect_ex(("localhost", port)) == 0
|
| 54 |
+
|
| 55 |
+
if model and "ollama" in model and api_base is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
run_ollama_serve()
|
| 57 |
+
|
| 58 |
+
else:
|
| 59 |
+
if headers:
|
| 60 |
+
headers = json.loads(headers)
|
| 61 |
+
save_worker_config(
|
| 62 |
+
model=model,
|
| 63 |
+
alias=alias,
|
| 64 |
+
api_base=api_base,
|
| 65 |
+
api_version=api_version,
|
| 66 |
+
debug=debug,
|
| 67 |
+
detailed_debug=detailed_debug,
|
| 68 |
+
temperature=temperature,
|
| 69 |
+
max_tokens=max_tokens,
|
| 70 |
+
request_timeout=request_timeout,
|
| 71 |
+
max_budget=max_budget,
|
| 72 |
+
telemetry=telemetry,
|
| 73 |
+
drop_params=drop_params,
|
| 74 |
+
add_function_to_prompt=add_function_to_prompt,
|
| 75 |
+
headers=headers,
|
| 76 |
+
save=save,
|
| 77 |
+
config=config,
|
| 78 |
+
use_queue=use_queue,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
if port == 8000 and is_port_in_use(port):
|
| 82 |
+
port = random.randint(1024, 49152)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
| 86 |
+
uvicorn.run(app, host=host, port=port)
|