Spaces:
Runtime error
Runtime error
Commit
·
bb2fe0d
1
Parent(s):
161d598
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def summarize(data, modelname):
|
| 8 |
+
if (modelname == 'Bart'):
|
| 9 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 10 |
+
print("world")
|
| 11 |
+
output = summarizer(data, max_length=130, min_length=30, do_sample=False)
|
| 12 |
+
return output[0]["summary_text"]
|
| 13 |
+
elif (modelname == 'Pegasus'):
|
| 14 |
+
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
| 15 |
+
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
|
| 16 |
+
|
| 17 |
+
# Create tokens - number representation of our text
|
| 18 |
+
tokens = tokenizer(data, truncation=True, padding="longest", return_tensors="pt")
|
| 19 |
+
summary = model.generate(**tokens)
|
| 20 |
+
return tokenizer.decode(summary[0])
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
st.sidebar.title("Text Summarization")
|
| 24 |
+
|
| 25 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
| 26 |
+
data = ""
|
| 27 |
+
output = ""
|
| 28 |
+
if uploaded_file is not None:
|
| 29 |
+
# To read file as bytes:
|
| 30 |
+
bytes_data = uploaded_file.getvalue()
|
| 31 |
+
|
| 32 |
+
data = bytes_data.decode("utf-8")
|
| 33 |
+
modelname = st.sidebar.radio("Choose your model",
|
| 34 |
+
["Bart", "Pegasus"],
|
| 35 |
+
help=" you can choose between 2 models (Bart or Pegasus) to summarize your text. More to come!", )
|
| 36 |
+
col1, col2 = st.columns(2)
|
| 37 |
+
|
| 38 |
+
with col1:
|
| 39 |
+
st.header("Copy paste your text or Upload file")
|
| 40 |
+
if (uploaded_file is not None):
|
| 41 |
+
with st.expander("Text to summarize", expanded=True):
|
| 42 |
+
st.write(
|
| 43 |
+
data
|
| 44 |
+
)
|
| 45 |
+
else:
|
| 46 |
+
with st.expander("Text to summarize", expanded=True):
|
| 47 |
+
data = st.text_area("Paste your text below (max 500 words)", height=510, )
|
| 48 |
+
|
| 49 |
+
MAX_WORDS = 500
|
| 50 |
+
import re
|
| 51 |
+
|
| 52 |
+
res = len(re.findall(r"\w+", data))
|
| 53 |
+
if res > MAX_WORDS:
|
| 54 |
+
st.warning(
|
| 55 |
+
"⚠️ Your text contains "
|
| 56 |
+
+ str(res)
|
| 57 |
+
+ " words."
|
| 58 |
+
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! 😊")
|
| 59 |
+
data = data[:MAX_WORDS]
|
| 60 |
+
Summarizebtn = st.button("Summarize")
|
| 61 |
+
if (Summarizebtn):
|
| 62 |
+
output = summarize(data, modelname)
|
| 63 |
+
|
| 64 |
+
with col2:
|
| 65 |
+
st.header("Summary")
|
| 66 |
+
if (len(output) > 0):
|
| 67 |
+
with st.expander("", expanded=True):
|
| 68 |
+
st.write(output)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|