Spaces:
Paused
Paused
update
Browse files- app.py +29 -29
- data/bash.sh +2 -0
- data/test.png +0 -0
- diffusion_webui/controlnet/controlnet_canny.py +91 -66
- diffusion_webui/controlnet/controlnet_depth.py +92 -65
- diffusion_webui/controlnet/controlnet_hed.py +93 -68
- diffusion_webui/controlnet/controlnet_mlsd.py +83 -63
- diffusion_webui/controlnet/controlnet_pose.py +91 -67
- diffusion_webui/controlnet/controlnet_scribble.py +91 -64
- diffusion_webui/controlnet/controlnet_seg.py +243 -107
- diffusion_webui/helpers.py +33 -0
- diffusion_webui/stable_diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/img2img_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/inpaint_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/keras_txt2img.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/text2img_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/img2img_app.py +68 -54
- diffusion_webui/stable_diffusion/inpaint_app.py +43 -54
- diffusion_webui/stable_diffusion/keras_txt2img.py +84 -61
- diffusion_webui/stable_diffusion/text2img_app.py +73 -57
- pyproject.toml +6 -0
- script/code_formatter.sh +2 -0
app.py
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
-
from diffusion_webui.controlnet.controlnet_canny import stable_diffusion_controlnet_canny_app, stable_diffusion_controlnet_canny
|
| 2 |
-
from diffusion_webui.controlnet.controlnet_depth import stable_diffusion_controlnet_depth_app, stable_diffusion_controlnet_depth
|
| 3 |
-
from diffusion_webui.controlnet.controlnet_hed import stable_diffusion_controlnet_hed_app, stable_diffusion_controlnet_hed
|
| 4 |
-
from diffusion_webui.controlnet.controlnet_mlsd import stable_diffusion_controlnet_mlsd_app, stable_diffusion_controlnet_mlsd
|
| 5 |
-
from diffusion_webui.controlnet.controlnet_pose import stable_diffusion_controlnet_pose_app, stable_diffusion_controlnet_pose
|
| 6 |
-
from diffusion_webui.controlnet.controlnet_scribble import stable_diffusion_controlnet_scribble_app, stable_diffusion_controlnet_scribble
|
| 7 |
-
from diffusion_webui.controlnet.controlnet_seg import stable_diffusion_controlnet_seg_app, stable_diffusion_controlnet_seg
|
| 8 |
-
|
| 9 |
-
from diffusion_webui.stable_diffusion.text2img_app import stable_diffusion_text2img_app, stable_diffusion_text2img
|
| 10 |
-
from diffusion_webui.stable_diffusion.img2img_app import stable_diffusion_img2img_app, stable_diffusion_img2img
|
| 11 |
-
from diffusion_webui.stable_diffusion.inpaint_app import stable_diffusion_inpaint_app, stable_diffusion_inpaint
|
| 12 |
-
from diffusion_webui.stable_diffusion.keras_txt2img import keras_stable_diffusion, keras_stable_diffusion_app
|
| 13 |
-
|
| 14 |
-
|
| 15 |
import gradio as gr
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
app = gr.Blocks()
|
| 18 |
with app:
|
| 19 |
gr.HTML(
|
|
@@ -33,30 +33,30 @@ with app:
|
|
| 33 |
)
|
| 34 |
with gr.Row():
|
| 35 |
with gr.Column():
|
| 36 |
-
with gr.Tab(
|
| 37 |
stable_diffusion_text2img_app()
|
| 38 |
-
with gr.Tab(
|
| 39 |
stable_diffusion_img2img_app()
|
| 40 |
-
with gr.Tab(
|
| 41 |
stable_diffusion_inpaint_app()
|
| 42 |
-
|
| 43 |
-
with gr.Tab(
|
| 44 |
-
with gr.Tab(
|
| 45 |
stable_diffusion_controlnet_canny_app()
|
| 46 |
-
with gr.Tab(
|
| 47 |
stable_diffusion_controlnet_depth_app()
|
| 48 |
-
with gr.Tab(
|
| 49 |
stable_diffusion_controlnet_hed_app()
|
| 50 |
-
with gr.Tab(
|
| 51 |
stable_diffusion_controlnet_mlsd_app()
|
| 52 |
-
with gr.Tab(
|
| 53 |
stable_diffusion_controlnet_pose_app()
|
| 54 |
-
with gr.Tab(
|
| 55 |
stable_diffusion_controlnet_seg_app()
|
| 56 |
-
with gr.Tab(
|
| 57 |
stable_diffusion_controlnet_scribble_app()
|
| 58 |
-
|
| 59 |
-
with gr.Tab(
|
| 60 |
keras_diffusion_app = keras_stable_diffusion_app()
|
| 61 |
|
| 62 |
-
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from diffusion_webui.helpers import (
|
| 4 |
+
keras_stable_diffusion_app,
|
| 5 |
+
stable_diffusion_controlnet_canny_app,
|
| 6 |
+
stable_diffusion_controlnet_depth_app,
|
| 7 |
+
stable_diffusion_controlnet_hed_app,
|
| 8 |
+
stable_diffusion_controlnet_mlsd_app,
|
| 9 |
+
stable_diffusion_controlnet_pose_app,
|
| 10 |
+
stable_diffusion_controlnet_scribble_app,
|
| 11 |
+
stable_diffusion_controlnet_seg_app,
|
| 12 |
+
stable_diffusion_img2img_app,
|
| 13 |
+
stable_diffusion_inpaint_app,
|
| 14 |
+
stable_diffusion_text2img_app,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
app = gr.Blocks()
|
| 18 |
with app:
|
| 19 |
gr.HTML(
|
|
|
|
| 33 |
)
|
| 34 |
with gr.Row():
|
| 35 |
with gr.Column():
|
| 36 |
+
with gr.Tab("Text2Img"):
|
| 37 |
stable_diffusion_text2img_app()
|
| 38 |
+
with gr.Tab("Img2Img"):
|
| 39 |
stable_diffusion_img2img_app()
|
| 40 |
+
with gr.Tab("Inpaint"):
|
| 41 |
stable_diffusion_inpaint_app()
|
| 42 |
+
|
| 43 |
+
with gr.Tab("ControlNet"):
|
| 44 |
+
with gr.Tab("Canny"):
|
| 45 |
stable_diffusion_controlnet_canny_app()
|
| 46 |
+
with gr.Tab("Depth"):
|
| 47 |
stable_diffusion_controlnet_depth_app()
|
| 48 |
+
with gr.Tab("HED"):
|
| 49 |
stable_diffusion_controlnet_hed_app()
|
| 50 |
+
with gr.Tab("MLSD"):
|
| 51 |
stable_diffusion_controlnet_mlsd_app()
|
| 52 |
+
with gr.Tab("Pose"):
|
| 53 |
stable_diffusion_controlnet_pose_app()
|
| 54 |
+
with gr.Tab("Seg"):
|
| 55 |
stable_diffusion_controlnet_seg_app()
|
| 56 |
+
with gr.Tab("Scribble"):
|
| 57 |
stable_diffusion_controlnet_scribble_app()
|
| 58 |
+
|
| 59 |
+
with gr.Tab("Keras Diffusion"):
|
| 60 |
keras_diffusion_app = keras_stable_diffusion_app()
|
| 61 |
|
| 62 |
+
app.launch(debug=True)
|
data/bash.sh
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
black . --config pyproject.toml
|
| 2 |
+
isort .
|
data/test.png
ADDED
|
diffusion_webui/controlnet/controlnet_canny.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
-
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from PIL import Image
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
-
import
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
stable_model_list = [
|
| 12 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -15,23 +16,22 @@ stable_model_list = [
|
|
| 15 |
|
| 16 |
controlnet_canny_model_list = [
|
| 17 |
"lllyasviel/sd-controlnet-canny",
|
| 18 |
-
"thibaud/controlnet-sd21-canny-diffusers"
|
| 19 |
]
|
| 20 |
|
| 21 |
|
| 22 |
-
stable_prompt_list = [
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
stable_negative_prompt_list = [
|
| 28 |
-
"bad, ugly",
|
| 29 |
-
"deformed"
|
| 30 |
-
]
|
| 31 |
|
| 32 |
def controlnet_canny(
|
| 33 |
-
image_path:str,
|
| 34 |
-
controlnet_model_path:str,
|
| 35 |
):
|
| 36 |
image = Image.open(image_path)
|
| 37 |
image = np.array(image)
|
|
@@ -42,28 +42,29 @@ def controlnet_canny(
|
|
| 42 |
image = Image.fromarray(image)
|
| 43 |
|
| 44 |
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
-
controlnet_model_path,
|
| 46 |
-
torch_dtype=torch.float16
|
| 47 |
)
|
| 48 |
return controlnet, image
|
| 49 |
|
| 50 |
|
| 51 |
def stable_diffusion_controlnet_canny(
|
| 52 |
-
image_path:str,
|
| 53 |
-
stable_model_path:str,
|
| 54 |
-
controlnet_model_path:str,
|
| 55 |
-
prompt:str,
|
| 56 |
-
negative_prompt:str,
|
| 57 |
-
guidance_scale:int,
|
| 58 |
-
num_inference_step:int,
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
controlnet, image = controlnet_canny(
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 64 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 65 |
-
controlnet=controlnet,
|
| 66 |
-
safety_checker=None,
|
| 67 |
torch_dtype=torch.float16,
|
| 68 |
)
|
| 69 |
pipe.to("cuda")
|
|
@@ -71,11 +72,11 @@ def stable_diffusion_controlnet_canny(
|
|
| 71 |
pipe.enable_xformers_memory_efficient_attention()
|
| 72 |
|
| 73 |
output = pipe(
|
| 74 |
-
prompt
|
| 75 |
-
image
|
| 76 |
-
negative_prompt
|
| 77 |
-
num_inference_steps
|
| 78 |
-
guidance_scale
|
| 79 |
).images
|
| 80 |
|
| 81 |
return output[0]
|
|
@@ -86,56 +87,80 @@ def stable_diffusion_controlnet_canny_app():
|
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column():
|
| 88 |
controlnet_canny_image_file = gr.Image(
|
| 89 |
-
type=
|
| 90 |
-
label='Image'
|
| 91 |
)
|
| 92 |
|
| 93 |
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 94 |
-
choices=stable_model_list,
|
| 95 |
-
value=stable_model_list[0],
|
| 96 |
-
label=
|
| 97 |
)
|
| 98 |
-
|
| 99 |
controlnet_canny_model_id = gr.Dropdown(
|
| 100 |
choices=controlnet_canny_model_list,
|
| 101 |
value=controlnet_canny_model_list[0],
|
| 102 |
-
label=
|
| 103 |
)
|
| 104 |
-
|
| 105 |
controlnet_canny_prompt = gr.Textbox(
|
| 106 |
-
lines=1,
|
| 107 |
-
value=stable_prompt_list[0],
|
| 108 |
-
label='Prompt'
|
| 109 |
)
|
| 110 |
|
| 111 |
controlnet_canny_negative_prompt = gr.Textbox(
|
| 112 |
-
lines=1,
|
| 113 |
-
value=stable_negative_prompt_list[0],
|
| 114 |
-
label=
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Accordion("Advanced Options", open=False):
|
| 118 |
controlnet_canny_guidance_scale = gr.Slider(
|
| 119 |
-
minimum=0.1,
|
| 120 |
-
maximum=15,
|
| 121 |
-
step=0.1,
|
| 122 |
-
value=7.5,
|
| 123 |
-
label=
|
| 124 |
)
|
| 125 |
|
| 126 |
controlnet_canny_num_inference_step = gr.Slider(
|
| 127 |
-
minimum=1,
|
| 128 |
-
maximum=100,
|
| 129 |
-
step=1,
|
| 130 |
-
value=50,
|
| 131 |
-
label=
|
| 132 |
)
|
| 133 |
|
| 134 |
-
controlnet_canny_predict = gr.Button(value=
|
| 135 |
-
|
| 136 |
with gr.Column():
|
| 137 |
-
output_image = gr.Image(label=
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
controlnet_canny_predict.click(
|
| 140 |
fn=stable_diffusion_controlnet_canny,
|
| 141 |
inputs=[
|
|
|
|
| 1 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from diffusers import (
|
| 6 |
+
ControlNetModel,
|
| 7 |
+
StableDiffusionControlNetPipeline,
|
| 8 |
+
UniPCMultistepScheduler,
|
| 9 |
+
)
|
| 10 |
+
from PIL import Image
|
| 11 |
|
| 12 |
stable_model_list = [
|
| 13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 16 |
|
| 17 |
controlnet_canny_model_list = [
|
| 18 |
"lllyasviel/sd-controlnet-canny",
|
| 19 |
+
"thibaud/controlnet-sd21-canny-diffusers",
|
| 20 |
]
|
| 21 |
|
| 22 |
|
| 23 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 24 |
+
|
| 25 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 26 |
+
|
| 27 |
+
data_list = [
|
| 28 |
+
"data/test.png",
|
| 29 |
+
]
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def controlnet_canny(
|
| 33 |
+
image_path: str,
|
| 34 |
+
controlnet_model_path: str,
|
| 35 |
):
|
| 36 |
image = Image.open(image_path)
|
| 37 |
image = np.array(image)
|
|
|
|
| 42 |
image = Image.fromarray(image)
|
| 43 |
|
| 44 |
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
+
controlnet_model_path, torch_dtype=torch.float16
|
|
|
|
| 46 |
)
|
| 47 |
return controlnet, image
|
| 48 |
|
| 49 |
|
| 50 |
def stable_diffusion_controlnet_canny(
|
| 51 |
+
image_path: str,
|
| 52 |
+
stable_model_path: str,
|
| 53 |
+
controlnet_model_path: str,
|
| 54 |
+
prompt: str,
|
| 55 |
+
negative_prompt: str,
|
| 56 |
+
guidance_scale: int,
|
| 57 |
+
num_inference_step: int,
|
| 58 |
+
):
|
| 59 |
+
|
| 60 |
+
controlnet, image = controlnet_canny(
|
| 61 |
+
image_path=image_path, controlnet_model_path=controlnet_model_path
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 65 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 66 |
+
controlnet=controlnet,
|
| 67 |
+
safety_checker=None,
|
| 68 |
torch_dtype=torch.float16,
|
| 69 |
)
|
| 70 |
pipe.to("cuda")
|
|
|
|
| 72 |
pipe.enable_xformers_memory_efficient_attention()
|
| 73 |
|
| 74 |
output = pipe(
|
| 75 |
+
prompt=prompt,
|
| 76 |
+
image=image,
|
| 77 |
+
negative_prompt=negative_prompt,
|
| 78 |
+
num_inference_steps=num_inference_step,
|
| 79 |
+
guidance_scale=guidance_scale,
|
| 80 |
).images
|
| 81 |
|
| 82 |
return output[0]
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
with gr.Column():
|
| 89 |
controlnet_canny_image_file = gr.Image(
|
| 90 |
+
type="filepath", label="Image"
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 94 |
+
choices=stable_model_list,
|
| 95 |
+
value=stable_model_list[0],
|
| 96 |
+
label="Stable Model Id",
|
| 97 |
)
|
| 98 |
+
|
| 99 |
controlnet_canny_model_id = gr.Dropdown(
|
| 100 |
choices=controlnet_canny_model_list,
|
| 101 |
value=controlnet_canny_model_list[0],
|
| 102 |
+
label="Controlnet Model Id",
|
| 103 |
)
|
| 104 |
+
|
| 105 |
controlnet_canny_prompt = gr.Textbox(
|
| 106 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
controlnet_canny_negative_prompt = gr.Textbox(
|
| 110 |
+
lines=1,
|
| 111 |
+
value=stable_negative_prompt_list[0],
|
| 112 |
+
label="Negative Prompt",
|
| 113 |
)
|
| 114 |
|
| 115 |
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
controlnet_canny_guidance_scale = gr.Slider(
|
| 117 |
+
minimum=0.1,
|
| 118 |
+
maximum=15,
|
| 119 |
+
step=0.1,
|
| 120 |
+
value=7.5,
|
| 121 |
+
label="Guidance Scale",
|
| 122 |
)
|
| 123 |
|
| 124 |
controlnet_canny_num_inference_step = gr.Slider(
|
| 125 |
+
minimum=1,
|
| 126 |
+
maximum=100,
|
| 127 |
+
step=1,
|
| 128 |
+
value=50,
|
| 129 |
+
label="Num Inference Step",
|
| 130 |
)
|
| 131 |
|
| 132 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 133 |
+
|
| 134 |
with gr.Column():
|
| 135 |
+
output_image = gr.Image(label="Output")
|
| 136 |
+
|
| 137 |
+
gr.Examples(
|
| 138 |
+
fn=stable_diffusion_controlnet_canny,
|
| 139 |
+
examples=[
|
| 140 |
+
[
|
| 141 |
+
data_list[0],
|
| 142 |
+
stable_model_list[0],
|
| 143 |
+
controlnet_canny_model_list[0],
|
| 144 |
+
stable_prompt_list[0],
|
| 145 |
+
stable_negative_prompt_list[0],
|
| 146 |
+
7.5,
|
| 147 |
+
50,
|
| 148 |
+
]
|
| 149 |
+
],
|
| 150 |
+
inputs=[
|
| 151 |
+
controlnet_canny_image_file,
|
| 152 |
+
controlnet_canny_stable_model_id,
|
| 153 |
+
controlnet_canny_model_id,
|
| 154 |
+
controlnet_canny_prompt,
|
| 155 |
+
controlnet_canny_negative_prompt,
|
| 156 |
+
controlnet_canny_guidance_scale,
|
| 157 |
+
controlnet_canny_num_inference_step,
|
| 158 |
+
],
|
| 159 |
+
outputs=[output_image],
|
| 160 |
+
cache_examples=False,
|
| 161 |
+
label="Controlnet Canny Example",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
controlnet_canny_predict.click(
|
| 165 |
fn=stable_diffusion_controlnet_canny,
|
| 166 |
inputs=[
|
diffusion_webui/controlnet/controlnet_depth.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler )
|
| 3 |
-
|
| 4 |
-
from transformers import pipeline
|
| 5 |
-
from PIL import Image
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
stable_model_list = [
|
| 11 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -13,27 +15,25 @@ stable_model_list = [
|
|
| 13 |
]
|
| 14 |
|
| 15 |
controlnet_depth_model_list = [
|
| 16 |
-
"
|
| 17 |
-
"thibaud/controlnet-sd21-depth-diffusers"
|
| 18 |
]
|
| 19 |
|
| 20 |
|
| 21 |
-
stable_prompt_list = [
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
]
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
]
|
| 30 |
|
| 31 |
|
| 32 |
-
def controlnet_depth(image_path:str, depth_model_path:str):
|
| 33 |
-
depth_estimator = pipeline(
|
| 34 |
|
| 35 |
image = Image.open(image_path)
|
| 36 |
-
image = depth_estimator(image)[
|
| 37 |
image = np.array(image)
|
| 38 |
image = image[:, :, None]
|
| 39 |
image = np.concatenate([image, image, image], axis=2)
|
|
@@ -45,23 +45,26 @@ def controlnet_depth(image_path:str, depth_model_path:str):
|
|
| 45 |
|
| 46 |
return controlnet, image
|
| 47 |
|
| 48 |
-
def stable_diffusion_controlnet_depth(
|
| 49 |
-
image_path:str,
|
| 50 |
-
stable_model_path:str,
|
| 51 |
-
depth_model_path:str,
|
| 52 |
-
prompt:str,
|
| 53 |
-
negative_prompt:str,
|
| 54 |
-
guidance_scale:int,
|
| 55 |
-
num_inference_step:int,
|
| 56 |
-
):
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 61 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 62 |
-
controlnet=controlnet,
|
| 63 |
-
safety_checker=None,
|
| 64 |
-
torch_dtype=torch.float16
|
| 65 |
)
|
| 66 |
|
| 67 |
pipe.to("cuda")
|
|
@@ -69,11 +72,11 @@ def stable_diffusion_controlnet_depth(
|
|
| 69 |
pipe.enable_xformers_memory_efficient_attention()
|
| 70 |
|
| 71 |
output = pipe(
|
| 72 |
-
prompt
|
| 73 |
-
image
|
| 74 |
-
negative_prompt
|
| 75 |
-
num_inference_steps
|
| 76 |
-
guidance_scale
|
| 77 |
).images
|
| 78 |
|
| 79 |
return output[0]
|
|
@@ -84,56 +87,80 @@ def stable_diffusion_controlnet_depth_app():
|
|
| 84 |
with gr.Row():
|
| 85 |
with gr.Column():
|
| 86 |
controlnet_depth_image_file = gr.Image(
|
| 87 |
-
type=
|
| 88 |
-
label='Image'
|
| 89 |
)
|
| 90 |
|
| 91 |
controlnet_depth_stable_model_id = gr.Dropdown(
|
| 92 |
-
choices=stable_model_list,
|
| 93 |
-
value=stable_model_list[0],
|
| 94 |
-
label=
|
| 95 |
)
|
| 96 |
|
| 97 |
controlnet_depth_model_id = gr.Dropdown(
|
| 98 |
choices=controlnet_depth_model_list,
|
| 99 |
value=controlnet_depth_model_list[0],
|
| 100 |
-
label=
|
| 101 |
)
|
| 102 |
-
|
| 103 |
controlnet_depth_prompt = gr.Textbox(
|
| 104 |
-
lines=1,
|
| 105 |
-
value=stable_prompt_list[0],
|
| 106 |
-
label='Prompt'
|
| 107 |
)
|
| 108 |
|
| 109 |
controlnet_depth_negative_prompt = gr.Textbox(
|
| 110 |
-
lines=1,
|
| 111 |
-
value=stable_negative_prompt_list[0],
|
| 112 |
-
label=
|
| 113 |
)
|
| 114 |
|
| 115 |
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
controlnet_depth_guidance_scale = gr.Slider(
|
| 117 |
-
minimum=0.1,
|
| 118 |
-
maximum=15,
|
| 119 |
-
step=0.1,
|
| 120 |
-
value=7.5,
|
| 121 |
-
label=
|
| 122 |
)
|
| 123 |
|
| 124 |
controlnet_depth_num_inference_step = gr.Slider(
|
| 125 |
-
minimum=1,
|
| 126 |
-
maximum=100,
|
| 127 |
-
step=1,
|
| 128 |
-
value=50,
|
| 129 |
-
label=
|
| 130 |
)
|
| 131 |
|
| 132 |
-
controlnet_depth_predict = gr.Button(value=
|
| 133 |
-
|
| 134 |
with gr.Column():
|
| 135 |
-
output_image = gr.Image(label=
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
controlnet_depth_predict.click(
|
| 138 |
fn=stable_diffusion_controlnet_depth,
|
| 139 |
inputs=[
|
|
@@ -145,5 +172,5 @@ def stable_diffusion_controlnet_depth_app():
|
|
| 145 |
controlnet_depth_guidance_scale,
|
| 146 |
controlnet_depth_num_inference_step,
|
| 147 |
],
|
| 148 |
-
outputs=output_image
|
| 149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import pipeline
|
| 11 |
|
| 12 |
stable_model_list = [
|
| 13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 15 |
]
|
| 16 |
|
| 17 |
controlnet_depth_model_list = [
|
| 18 |
+
"lllyasviel/sd-controlnet-depth",
|
| 19 |
+
"thibaud/controlnet-sd21-depth-diffusers",
|
| 20 |
]
|
| 21 |
|
| 22 |
|
| 23 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 24 |
+
|
| 25 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
| 26 |
|
| 27 |
+
data_list = [
|
| 28 |
+
"data/test.png",
|
| 29 |
+
]
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
+
def controlnet_depth(image_path: str, depth_model_path: str):
|
| 33 |
+
depth_estimator = pipeline("depth-estimation")
|
| 34 |
|
| 35 |
image = Image.open(image_path)
|
| 36 |
+
image = depth_estimator(image)["depth"]
|
| 37 |
image = np.array(image)
|
| 38 |
image = image[:, :, None]
|
| 39 |
image = np.concatenate([image, image, image], axis=2)
|
|
|
|
| 45 |
|
| 46 |
return controlnet, image
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
def stable_diffusion_controlnet_depth(
|
| 50 |
+
image_path: str,
|
| 51 |
+
stable_model_path: str,
|
| 52 |
+
depth_model_path: str,
|
| 53 |
+
prompt: str,
|
| 54 |
+
negative_prompt: str,
|
| 55 |
+
guidance_scale: int,
|
| 56 |
+
num_inference_step: int,
|
| 57 |
+
):
|
| 58 |
+
|
| 59 |
+
controlnet, image = controlnet_depth(
|
| 60 |
+
image_path=image_path, depth_model_path=depth_model_path
|
| 61 |
+
)
|
| 62 |
|
| 63 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 64 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 65 |
+
controlnet=controlnet,
|
| 66 |
+
safety_checker=None,
|
| 67 |
+
torch_dtype=torch.float16,
|
| 68 |
)
|
| 69 |
|
| 70 |
pipe.to("cuda")
|
|
|
|
| 72 |
pipe.enable_xformers_memory_efficient_attention()
|
| 73 |
|
| 74 |
output = pipe(
|
| 75 |
+
prompt=prompt,
|
| 76 |
+
image=image,
|
| 77 |
+
negative_prompt=negative_prompt,
|
| 78 |
+
num_inference_steps=num_inference_step,
|
| 79 |
+
guidance_scale=guidance_scale,
|
| 80 |
).images
|
| 81 |
|
| 82 |
return output[0]
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
with gr.Column():
|
| 89 |
controlnet_depth_image_file = gr.Image(
|
| 90 |
+
type="filepath", label="Image"
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
controlnet_depth_stable_model_id = gr.Dropdown(
|
| 94 |
+
choices=stable_model_list,
|
| 95 |
+
value=stable_model_list[0],
|
| 96 |
+
label="Stable Model Id",
|
| 97 |
)
|
| 98 |
|
| 99 |
controlnet_depth_model_id = gr.Dropdown(
|
| 100 |
choices=controlnet_depth_model_list,
|
| 101 |
value=controlnet_depth_model_list[0],
|
| 102 |
+
label="ControlNet Model Id",
|
| 103 |
)
|
| 104 |
+
|
| 105 |
controlnet_depth_prompt = gr.Textbox(
|
| 106 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
controlnet_depth_negative_prompt = gr.Textbox(
|
| 110 |
+
lines=1,
|
| 111 |
+
value=stable_negative_prompt_list[0],
|
| 112 |
+
label="Negative Prompt",
|
| 113 |
)
|
| 114 |
|
| 115 |
with gr.Accordion("Advanced Options", open=False):
|
| 116 |
controlnet_depth_guidance_scale = gr.Slider(
|
| 117 |
+
minimum=0.1,
|
| 118 |
+
maximum=15,
|
| 119 |
+
step=0.1,
|
| 120 |
+
value=7.5,
|
| 121 |
+
label="Guidance Scale",
|
| 122 |
)
|
| 123 |
|
| 124 |
controlnet_depth_num_inference_step = gr.Slider(
|
| 125 |
+
minimum=1,
|
| 126 |
+
maximum=100,
|
| 127 |
+
step=1,
|
| 128 |
+
value=50,
|
| 129 |
+
label="Num Inference Step",
|
| 130 |
)
|
| 131 |
|
| 132 |
+
controlnet_depth_predict = gr.Button(value="Generator")
|
| 133 |
+
|
| 134 |
with gr.Column():
|
| 135 |
+
output_image = gr.Image(label="Output")
|
| 136 |
+
|
| 137 |
+
gr.Examples(
|
| 138 |
+
fn=stable_diffusion_controlnet_depth,
|
| 139 |
+
examples=[
|
| 140 |
+
[
|
| 141 |
+
data_list[0],
|
| 142 |
+
stable_model_list[0],
|
| 143 |
+
controlnet_depth_model_list[0],
|
| 144 |
+
stable_prompt_list[0],
|
| 145 |
+
stable_negative_prompt_list[0],
|
| 146 |
+
7.5,
|
| 147 |
+
50,
|
| 148 |
+
]
|
| 149 |
+
],
|
| 150 |
+
inputs=[
|
| 151 |
+
controlnet_depth_image_file,
|
| 152 |
+
controlnet_depth_stable_model_id,
|
| 153 |
+
controlnet_depth_model_id,
|
| 154 |
+
controlnet_depth_prompt,
|
| 155 |
+
controlnet_depth_negative_prompt,
|
| 156 |
+
controlnet_depth_guidance_scale,
|
| 157 |
+
controlnet_depth_num_inference_step,
|
| 158 |
+
],
|
| 159 |
+
outputs=[output_image],
|
| 160 |
+
cache_examples=False,
|
| 161 |
+
label="ControlNet Depth Example",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
controlnet_depth_predict.click(
|
| 165 |
fn=stable_diffusion_controlnet_depth,
|
| 166 |
inputs=[
|
|
|
|
| 172 |
controlnet_depth_guidance_scale,
|
| 173 |
controlnet_depth_num_inference_step,
|
| 174 |
],
|
| 175 |
+
outputs=output_image,
|
| 176 |
)
|
diffusion_webui/controlnet/controlnet_hed.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import HEDdetector
|
| 5 |
-
from PIL import Image
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
stable_model_list = [
|
| 10 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -12,51 +14,51 @@ stable_model_list = [
|
|
| 12 |
]
|
| 13 |
|
| 14 |
controlnet_hed_model_list = [
|
| 15 |
-
"
|
| 16 |
-
"thibaud/controlnet-sd21-hed-diffusers"
|
| 17 |
]
|
| 18 |
|
| 19 |
-
stable_prompt_list = [
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
]
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
]
|
| 28 |
|
| 29 |
|
| 30 |
-
def controlnet_hed(image_path:str, controlnet_hed_model_path:str):
|
| 31 |
-
hed = HEDdetector.from_pretrained(
|
| 32 |
|
| 33 |
image = Image.open(image_path)
|
| 34 |
image = hed(image)
|
| 35 |
|
| 36 |
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
-
controlnet_hed_model_path,
|
| 38 |
-
torch_dtype=torch.float16
|
| 39 |
)
|
| 40 |
return controlnet, image
|
| 41 |
|
| 42 |
|
| 43 |
def stable_diffusion_controlnet_hed(
|
| 44 |
-
image_path:str,
|
| 45 |
-
stable_model_path:str,
|
| 46 |
-
controlnet_hed_model_path:str,
|
| 47 |
-
prompt:str,
|
| 48 |
-
negative_prompt:str,
|
| 49 |
-
guidance_scale:int,
|
| 50 |
-
num_inference_step:int,
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
controlnet, image = controlnet_hed(
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 56 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 57 |
-
controlnet=controlnet,
|
| 58 |
-
safety_checker=None,
|
| 59 |
-
torch_dtype=torch.float16
|
| 60 |
)
|
| 61 |
|
| 62 |
pipe.to("cuda")
|
|
@@ -64,71 +66,95 @@ def stable_diffusion_controlnet_hed(
|
|
| 64 |
pipe.enable_xformers_memory_efficient_attention()
|
| 65 |
|
| 66 |
output = pipe(
|
| 67 |
-
prompt
|
| 68 |
-
image
|
| 69 |
-
negative_prompt
|
| 70 |
-
num_inference_steps
|
| 71 |
-
guidance_scale
|
| 72 |
).images
|
| 73 |
|
| 74 |
return output[0]
|
| 75 |
|
|
|
|
| 76 |
def stable_diffusion_controlnet_hed_app():
|
| 77 |
with gr.Blocks():
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
controlnet_hed_image_file = gr.Image(
|
| 81 |
-
type=
|
| 82 |
-
label='Image'
|
| 83 |
)
|
| 84 |
|
| 85 |
controlnet_hed_stable_model_id = gr.Dropdown(
|
| 86 |
-
choices=stable_model_list,
|
| 87 |
-
value=stable_model_list[0],
|
| 88 |
-
label=
|
| 89 |
)
|
| 90 |
-
|
| 91 |
controlnet_hed_model_id = gr.Dropdown(
|
| 92 |
choices=stable_model_list,
|
| 93 |
value=stable_model_list[1],
|
| 94 |
-
label=
|
| 95 |
)
|
| 96 |
|
| 97 |
controlnet_hed_prompt = gr.Textbox(
|
| 98 |
-
lines=1,
|
| 99 |
-
value=stable_prompt_list[0],
|
| 100 |
-
label='Prompt'
|
| 101 |
)
|
| 102 |
|
| 103 |
controlnet_hed_negative_prompt = gr.Textbox(
|
| 104 |
-
lines=1,
|
| 105 |
-
value=stable_negative_prompt_list[0],
|
| 106 |
-
label=
|
| 107 |
)
|
| 108 |
|
| 109 |
with gr.Accordion("Advanced Options", open=False):
|
| 110 |
controlnet_hed_guidance_scale = gr.Slider(
|
| 111 |
-
minimum=0.1,
|
| 112 |
-
maximum=15,
|
| 113 |
-
step=0.1,
|
| 114 |
-
value=7.5,
|
| 115 |
-
label=
|
| 116 |
)
|
| 117 |
|
| 118 |
controlnet_hed_num_inference_step = gr.Slider(
|
| 119 |
-
minimum=1,
|
| 120 |
-
maximum=100,
|
| 121 |
-
step=1,
|
| 122 |
-
value=50,
|
| 123 |
-
label=
|
| 124 |
)
|
| 125 |
|
| 126 |
-
controlnet_hed_predict = gr.Button(value=
|
| 127 |
-
|
| 128 |
-
|
| 129 |
with gr.Column():
|
| 130 |
-
output_image = gr.Image(label=
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
controlnet_hed_predict.click(
|
| 133 |
fn=stable_diffusion_controlnet_hed,
|
| 134 |
inputs=[
|
|
@@ -140,6 +166,5 @@ def stable_diffusion_controlnet_hed_app():
|
|
| 140 |
controlnet_hed_guidance_scale,
|
| 141 |
controlnet_hed_num_inference_step,
|
| 142 |
],
|
| 143 |
-
outputs=[output_image]
|
| 144 |
)
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from controlnet_aux import HEDdetector
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
|
| 11 |
stable_model_list = [
|
| 12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
controlnet_hed_model_list = [
|
| 17 |
+
"lllyasviel/sd-controlnet-hed",
|
| 18 |
+
"thibaud/controlnet-sd21-hed-diffusers",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 22 |
+
|
| 23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
| 24 |
|
| 25 |
+
data_list = [
|
| 26 |
+
"data/test.png",
|
| 27 |
+
]
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
+
def controlnet_hed(image_path: str, controlnet_hed_model_path: str):
|
| 31 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
|
| 33 |
image = Image.open(image_path)
|
| 34 |
image = hed(image)
|
| 35 |
|
| 36 |
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
+
controlnet_hed_model_path, torch_dtype=torch.float16
|
|
|
|
| 38 |
)
|
| 39 |
return controlnet, image
|
| 40 |
|
| 41 |
|
| 42 |
def stable_diffusion_controlnet_hed(
|
| 43 |
+
image_path: str,
|
| 44 |
+
stable_model_path: str,
|
| 45 |
+
controlnet_hed_model_path: str,
|
| 46 |
+
prompt: str,
|
| 47 |
+
negative_prompt: str,
|
| 48 |
+
guidance_scale: int,
|
| 49 |
+
num_inference_step: int,
|
| 50 |
+
):
|
| 51 |
+
|
| 52 |
+
controlnet, image = controlnet_hed(
|
| 53 |
+
image_path=image_path,
|
| 54 |
+
controlnet_hed_model_path=controlnet_hed_model_path,
|
| 55 |
+
)
|
| 56 |
|
| 57 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 58 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 59 |
+
controlnet=controlnet,
|
| 60 |
+
safety_checker=None,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
)
|
| 63 |
|
| 64 |
pipe.to("cuda")
|
|
|
|
| 66 |
pipe.enable_xformers_memory_efficient_attention()
|
| 67 |
|
| 68 |
output = pipe(
|
| 69 |
+
prompt=prompt,
|
| 70 |
+
image=image,
|
| 71 |
+
negative_prompt=negative_prompt,
|
| 72 |
+
num_inference_steps=num_inference_step,
|
| 73 |
+
guidance_scale=guidance_scale,
|
| 74 |
).images
|
| 75 |
|
| 76 |
return output[0]
|
| 77 |
|
| 78 |
+
|
| 79 |
def stable_diffusion_controlnet_hed_app():
|
| 80 |
with gr.Blocks():
|
| 81 |
with gr.Row():
|
| 82 |
with gr.Column():
|
| 83 |
controlnet_hed_image_file = gr.Image(
|
| 84 |
+
type="filepath", label="Image"
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
controlnet_hed_stable_model_id = gr.Dropdown(
|
| 88 |
+
choices=stable_model_list,
|
| 89 |
+
value=stable_model_list[0],
|
| 90 |
+
label="Stable Model Id",
|
| 91 |
)
|
| 92 |
+
|
| 93 |
controlnet_hed_model_id = gr.Dropdown(
|
| 94 |
choices=stable_model_list,
|
| 95 |
value=stable_model_list[1],
|
| 96 |
+
label="ControlNet Model Id",
|
| 97 |
)
|
| 98 |
|
| 99 |
controlnet_hed_prompt = gr.Textbox(
|
| 100 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
controlnet_hed_negative_prompt = gr.Textbox(
|
| 104 |
+
lines=1,
|
| 105 |
+
value=stable_negative_prompt_list[0],
|
| 106 |
+
label="Negative Prompt",
|
| 107 |
)
|
| 108 |
|
| 109 |
with gr.Accordion("Advanced Options", open=False):
|
| 110 |
controlnet_hed_guidance_scale = gr.Slider(
|
| 111 |
+
minimum=0.1,
|
| 112 |
+
maximum=15,
|
| 113 |
+
step=0.1,
|
| 114 |
+
value=7.5,
|
| 115 |
+
label="Guidance Scale",
|
| 116 |
)
|
| 117 |
|
| 118 |
controlnet_hed_num_inference_step = gr.Slider(
|
| 119 |
+
minimum=1,
|
| 120 |
+
maximum=100,
|
| 121 |
+
step=1,
|
| 122 |
+
value=50,
|
| 123 |
+
label="Num Inference Step",
|
| 124 |
)
|
| 125 |
|
| 126 |
+
controlnet_hed_predict = gr.Button(value="Generator")
|
| 127 |
+
|
|
|
|
| 128 |
with gr.Column():
|
| 129 |
+
output_image = gr.Image(label="Output")
|
| 130 |
+
|
| 131 |
+
gr.Examples(
|
| 132 |
+
fn=stable_diffusion_controlnet_hed,
|
| 133 |
+
examples=[
|
| 134 |
+
[
|
| 135 |
+
data_list[0],
|
| 136 |
+
stable_model_list[0],
|
| 137 |
+
controlnet_hed_model_list[0],
|
| 138 |
+
stable_prompt_list[0],
|
| 139 |
+
stable_negative_prompt_list[0],
|
| 140 |
+
7.5,
|
| 141 |
+
50,
|
| 142 |
+
]
|
| 143 |
+
],
|
| 144 |
+
inputs=[
|
| 145 |
+
controlnet_hed_image_file,
|
| 146 |
+
controlnet_hed_stable_model_id,
|
| 147 |
+
controlnet_hed_model_id,
|
| 148 |
+
controlnet_hed_prompt,
|
| 149 |
+
controlnet_hed_negative_prompt,
|
| 150 |
+
controlnet_hed_guidance_scale,
|
| 151 |
+
controlnet_hed_num_inference_step,
|
| 152 |
+
],
|
| 153 |
+
outputs=[output_image],
|
| 154 |
+
cache_examples=False,
|
| 155 |
+
label="ControlNet HED Example",
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
controlnet_hed_predict.click(
|
| 159 |
fn=stable_diffusion_controlnet_hed,
|
| 160 |
inputs=[
|
|
|
|
| 166 |
controlnet_hed_guidance_scale,
|
| 167 |
controlnet_hed_num_inference_step,
|
| 168 |
],
|
| 169 |
+
outputs=[output_image],
|
| 170 |
)
|
|
|
diffusion_webui/controlnet/controlnet_mlsd.py
CHANGED
|
@@ -1,59 +1,56 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import MLSDdetector
|
| 5 |
-
from PIL import Image
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
stable_model_list = [
|
| 10 |
"runwayml/stable-diffusion-v1-5",
|
| 11 |
-
"stabilityai/stable-diffusion-2",
|
| 12 |
-
"stabilityai/stable-diffusion-2-base",
|
| 13 |
-
"stabilityai/stable-diffusion-2-1",
|
| 14 |
-
"stabilityai/stable-diffusion-2-1-base"
|
| 15 |
]
|
| 16 |
|
| 17 |
-
stable_prompt_list = [
|
| 18 |
-
"a photo of a man.",
|
| 19 |
-
"a photo of a girl."
|
| 20 |
-
]
|
| 21 |
|
| 22 |
-
stable_negative_prompt_list = [
|
| 23 |
-
"bad, ugly",
|
| 24 |
-
"deformed"
|
| 25 |
-
]
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
image = Image.open(image_path)
|
| 32 |
image = mlsd(image)
|
| 33 |
|
| 34 |
controlnet = ControlNetModel.from_pretrained(
|
| 35 |
-
"
|
| 36 |
-
torch_dtype=torch.float16
|
| 37 |
)
|
| 38 |
|
| 39 |
return controlnet, image
|
| 40 |
|
|
|
|
| 41 |
def stable_diffusion_controlnet_mlsd(
|
| 42 |
-
image_path:str,
|
| 43 |
-
model_path:str,
|
| 44 |
-
prompt:str,
|
| 45 |
-
negative_prompt:str,
|
| 46 |
-
guidance_scale:int,
|
| 47 |
-
num_inference_step:int,
|
| 48 |
-
|
| 49 |
|
| 50 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 51 |
|
| 52 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 53 |
-
pretrained_model_name_or_path=model_path,
|
| 54 |
-
controlnet=controlnet,
|
| 55 |
-
safety_checker=None,
|
| 56 |
-
torch_dtype=torch.float16
|
| 57 |
)
|
| 58 |
|
| 59 |
pipe.to("cuda")
|
|
@@ -61,64 +58,87 @@ def stable_diffusion_controlnet_mlsd(
|
|
| 61 |
pipe.enable_xformers_memory_efficient_attention()
|
| 62 |
|
| 63 |
output = pipe(
|
| 64 |
-
prompt
|
| 65 |
-
image
|
| 66 |
-
negative_prompt
|
| 67 |
-
num_inference_steps
|
| 68 |
-
guidance_scale
|
| 69 |
).images
|
| 70 |
|
| 71 |
return output[0]
|
| 72 |
|
|
|
|
| 73 |
def stable_diffusion_controlnet_mlsd_app():
|
| 74 |
with gr.Blocks():
|
| 75 |
with gr.Row():
|
| 76 |
with gr.Column():
|
| 77 |
controlnet_mlsd_image_file = gr.Image(
|
| 78 |
-
type=
|
| 79 |
-
label='Image'
|
| 80 |
)
|
| 81 |
|
| 82 |
controlnet_mlsd_model_id = gr.Dropdown(
|
| 83 |
-
choices=stable_model_list,
|
| 84 |
-
value=stable_model_list[0],
|
| 85 |
-
label=
|
| 86 |
)
|
| 87 |
|
| 88 |
controlnet_mlsd_prompt = gr.Textbox(
|
| 89 |
-
lines=1,
|
| 90 |
-
value=stable_prompt_list[0],
|
| 91 |
-
label='Prompt'
|
| 92 |
)
|
| 93 |
|
| 94 |
controlnet_mlsd_negative_prompt = gr.Textbox(
|
| 95 |
-
lines=1,
|
| 96 |
-
value=stable_negative_prompt_list[0],
|
| 97 |
-
label=
|
| 98 |
)
|
| 99 |
|
| 100 |
with gr.Accordion("Advanced Options", open=False):
|
| 101 |
controlnet_mlsd_guidance_scale = gr.Slider(
|
| 102 |
-
minimum=0.1,
|
| 103 |
-
maximum=15,
|
| 104 |
-
step=0.1,
|
| 105 |
-
value=7.5,
|
| 106 |
-
label=
|
| 107 |
)
|
| 108 |
|
| 109 |
controlnet_mlsd_num_inference_step = gr.Slider(
|
| 110 |
-
minimum=1,
|
| 111 |
-
maximum=100,
|
| 112 |
-
step=1,
|
| 113 |
-
value=50,
|
| 114 |
-
label=
|
| 115 |
)
|
| 116 |
|
| 117 |
-
controlnet_mlsd_predict = gr.Button(value=
|
| 118 |
|
| 119 |
with gr.Column():
|
| 120 |
-
output_image = gr.Image(label=
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
controlnet_mlsd_predict.click(
|
| 123 |
fn=stable_diffusion_controlnet_mlsd,
|
| 124 |
inputs=[
|
|
@@ -127,7 +147,7 @@ def stable_diffusion_controlnet_mlsd_app():
|
|
| 127 |
controlnet_mlsd_prompt,
|
| 128 |
controlnet_mlsd_negative_prompt,
|
| 129 |
controlnet_mlsd_guidance_scale,
|
| 130 |
-
controlnet_mlsd_num_inference_step
|
| 131 |
],
|
| 132 |
-
outputs=output_image
|
| 133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from controlnet_aux import MLSDdetector
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
|
| 11 |
stable_model_list = [
|
| 12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
]
|
| 14 |
|
| 15 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
data_list = [
|
| 20 |
+
"data/test.png",
|
| 21 |
+
]
|
| 22 |
|
| 23 |
+
|
| 24 |
+
def controlnet_mlsd(image_path: str):
|
| 25 |
+
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 26 |
|
| 27 |
image = Image.open(image_path)
|
| 28 |
image = mlsd(image)
|
| 29 |
|
| 30 |
controlnet = ControlNetModel.from_pretrained(
|
| 31 |
+
"lllyasviel/sd-controlnet-mlsd",
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
)
|
| 34 |
|
| 35 |
return controlnet, image
|
| 36 |
|
| 37 |
+
|
| 38 |
def stable_diffusion_controlnet_mlsd(
|
| 39 |
+
image_path: str,
|
| 40 |
+
model_path: str,
|
| 41 |
+
prompt: str,
|
| 42 |
+
negative_prompt: str,
|
| 43 |
+
guidance_scale: int,
|
| 44 |
+
num_inference_step: int,
|
| 45 |
+
):
|
| 46 |
|
| 47 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 48 |
|
| 49 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 50 |
+
pretrained_model_name_or_path=model_path,
|
| 51 |
+
controlnet=controlnet,
|
| 52 |
+
safety_checker=None,
|
| 53 |
+
torch_dtype=torch.float16,
|
| 54 |
)
|
| 55 |
|
| 56 |
pipe.to("cuda")
|
|
|
|
| 58 |
pipe.enable_xformers_memory_efficient_attention()
|
| 59 |
|
| 60 |
output = pipe(
|
| 61 |
+
prompt=prompt,
|
| 62 |
+
image=image,
|
| 63 |
+
negative_prompt=negative_prompt,
|
| 64 |
+
num_inference_steps=num_inference_step,
|
| 65 |
+
guidance_scale=guidance_scale,
|
| 66 |
).images
|
| 67 |
|
| 68 |
return output[0]
|
| 69 |
|
| 70 |
+
|
| 71 |
def stable_diffusion_controlnet_mlsd_app():
|
| 72 |
with gr.Blocks():
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column():
|
| 75 |
controlnet_mlsd_image_file = gr.Image(
|
| 76 |
+
type="filepath", label="Image"
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
controlnet_mlsd_model_id = gr.Dropdown(
|
| 80 |
+
choices=stable_model_list,
|
| 81 |
+
value=stable_model_list[0],
|
| 82 |
+
label="Stable Model Id",
|
| 83 |
)
|
| 84 |
|
| 85 |
controlnet_mlsd_prompt = gr.Textbox(
|
| 86 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
controlnet_mlsd_negative_prompt = gr.Textbox(
|
| 90 |
+
lines=1,
|
| 91 |
+
value=stable_negative_prompt_list[0],
|
| 92 |
+
label="Negative Prompt",
|
| 93 |
)
|
| 94 |
|
| 95 |
with gr.Accordion("Advanced Options", open=False):
|
| 96 |
controlnet_mlsd_guidance_scale = gr.Slider(
|
| 97 |
+
minimum=0.1,
|
| 98 |
+
maximum=15,
|
| 99 |
+
step=0.1,
|
| 100 |
+
value=7.5,
|
| 101 |
+
label="Guidance Scale",
|
| 102 |
)
|
| 103 |
|
| 104 |
controlnet_mlsd_num_inference_step = gr.Slider(
|
| 105 |
+
minimum=1,
|
| 106 |
+
maximum=100,
|
| 107 |
+
step=1,
|
| 108 |
+
value=50,
|
| 109 |
+
label="Num Inference Step",
|
| 110 |
)
|
| 111 |
|
| 112 |
+
controlnet_mlsd_predict = gr.Button(value="Generator")
|
| 113 |
|
| 114 |
with gr.Column():
|
| 115 |
+
output_image = gr.Image(label="Output")
|
| 116 |
+
|
| 117 |
+
gr.Examples(
|
| 118 |
+
fn=stable_diffusion_controlnet_mlsd,
|
| 119 |
+
examples=[
|
| 120 |
+
[
|
| 121 |
+
data_list[0],
|
| 122 |
+
stable_model_list[0],
|
| 123 |
+
stable_prompt_list[0],
|
| 124 |
+
stable_negative_prompt_list[0],
|
| 125 |
+
7.5,
|
| 126 |
+
50,
|
| 127 |
+
]
|
| 128 |
+
],
|
| 129 |
+
inputs=[
|
| 130 |
+
controlnet_mlsd_image_file,
|
| 131 |
+
controlnet_mlsd_model_id,
|
| 132 |
+
controlnet_mlsd_prompt,
|
| 133 |
+
controlnet_mlsd_negative_prompt,
|
| 134 |
+
controlnet_mlsd_guidance_scale,
|
| 135 |
+
controlnet_mlsd_num_inference_step,
|
| 136 |
+
],
|
| 137 |
+
outputs=[output_image],
|
| 138 |
+
label="ControlNet-MLSD Example",
|
| 139 |
+
cache_examples=False,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
controlnet_mlsd_predict.click(
|
| 143 |
fn=stable_diffusion_controlnet_mlsd,
|
| 144 |
inputs=[
|
|
|
|
| 147 |
controlnet_mlsd_prompt,
|
| 148 |
controlnet_mlsd_negative_prompt,
|
| 149 |
controlnet_mlsd_guidance_scale,
|
| 150 |
+
controlnet_mlsd_num_inference_step,
|
| 151 |
],
|
| 152 |
+
outputs=output_image,
|
| 153 |
)
|
diffusion_webui/controlnet/controlnet_pose.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import OpenposeDetector
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
stable_model_list = [
|
| 11 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -13,51 +14,52 @@ stable_model_list = [
|
|
| 13 |
]
|
| 14 |
|
| 15 |
controlnet_pose_model_list = [
|
| 16 |
-
"
|
| 17 |
-
"thibaud/controlnet-sd21-openpose-diffusers"
|
| 18 |
]
|
| 19 |
|
| 20 |
-
stable_prompt_list = [
|
| 21 |
-
"a photo of a man.",
|
| 22 |
-
"a photo of a girl."
|
| 23 |
-
]
|
| 24 |
|
| 25 |
-
stable_negative_prompt_list = [
|
| 26 |
-
"bad, ugly",
|
| 27 |
-
"deformed"
|
| 28 |
-
]
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
image = Image.open(image_path)
|
| 35 |
image = openpose(image)
|
| 36 |
|
| 37 |
controlnet = ControlNetModel.from_pretrained(
|
| 38 |
-
controlnet_pose_model_path,
|
| 39 |
-
torch_dtype=torch.float16
|
| 40 |
)
|
| 41 |
|
| 42 |
return controlnet, image
|
| 43 |
|
| 44 |
-
def stable_diffusion_controlnet_pose(
|
| 45 |
-
image_path:str,
|
| 46 |
-
stable_model_path:str,
|
| 47 |
-
controlnet_pose_model_path:str,
|
| 48 |
-
prompt:str,
|
| 49 |
-
negative_prompt:str,
|
| 50 |
-
guidance_scale:int,
|
| 51 |
-
num_inference_step:int,
|
| 52 |
-
):
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 57 |
-
pretrained_model_name_or_path=-stable_model_path,
|
| 58 |
-
controlnet=controlnet,
|
| 59 |
-
safety_checker=None,
|
| 60 |
-
torch_dtype=torch.float16
|
| 61 |
)
|
| 62 |
|
| 63 |
pipe.to("cuda")
|
|
@@ -65,11 +67,11 @@ def stable_diffusion_controlnet_pose(
|
|
| 65 |
pipe.enable_xformers_memory_efficient_attention()
|
| 66 |
|
| 67 |
output = pipe(
|
| 68 |
-
prompt
|
| 69 |
-
image
|
| 70 |
-
negative_prompt
|
| 71 |
-
num_inference_steps
|
| 72 |
-
guidance_scale
|
| 73 |
).images
|
| 74 |
|
| 75 |
return output[0]
|
|
@@ -80,57 +82,79 @@ def stable_diffusion_controlnet_pose_app():
|
|
| 80 |
with gr.Row():
|
| 81 |
with gr.Column():
|
| 82 |
controlnet_pose_image_file = gr.Image(
|
| 83 |
-
type=
|
| 84 |
-
label='Image'
|
| 85 |
)
|
| 86 |
|
| 87 |
controlnet_pose_stable_model_id = gr.Dropdown(
|
| 88 |
-
choices=stable_model_list,
|
| 89 |
-
value=stable_model_list[0],
|
| 90 |
-
label=
|
| 91 |
)
|
| 92 |
-
|
| 93 |
controlnet_pose_model_id = gr.Dropdown(
|
| 94 |
choices=stable_model_list,
|
| 95 |
value=stable_model_list[1],
|
| 96 |
-
label=
|
| 97 |
)
|
| 98 |
-
|
| 99 |
|
| 100 |
controlnet_pose_prompt = gr.Textbox(
|
| 101 |
-
lines=1,
|
| 102 |
-
value=stable_prompt_list[0],
|
| 103 |
-
label='Prompt'
|
| 104 |
)
|
| 105 |
|
| 106 |
controlnet_pose_negative_prompt = gr.Textbox(
|
| 107 |
-
lines=1,
|
| 108 |
-
value=stable_negative_prompt_list[0],
|
| 109 |
-
label=
|
| 110 |
)
|
| 111 |
|
| 112 |
with gr.Accordion("Advanced Options", open=False):
|
| 113 |
controlnet_pose_guidance_scale = gr.Slider(
|
| 114 |
-
minimum=0.1,
|
| 115 |
-
maximum=15,
|
| 116 |
-
step=0.1,
|
| 117 |
-
value=7.5,
|
| 118 |
-
label=
|
| 119 |
)
|
| 120 |
|
| 121 |
controlnet_pose_num_inference_step = gr.Slider(
|
| 122 |
-
minimum=1,
|
| 123 |
-
maximum=100,
|
| 124 |
-
step=1,
|
| 125 |
-
value=50,
|
| 126 |
-
label=
|
| 127 |
)
|
| 128 |
|
| 129 |
-
controlnet_pose_predict = gr.Button(value=
|
| 130 |
|
| 131 |
with gr.Column():
|
| 132 |
-
output_image = gr.Image(label=
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
controlnet_pose_predict.click(
|
| 135 |
fn=stable_diffusion_controlnet_pose,
|
| 136 |
inputs=[
|
|
@@ -142,5 +166,5 @@ def stable_diffusion_controlnet_pose_app():
|
|
| 142 |
controlnet_pose_guidance_scale,
|
| 143 |
controlnet_pose_num_inference_step,
|
| 144 |
],
|
| 145 |
-
outputs=output_image
|
| 146 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from controlnet_aux import OpenposeDetector
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
|
| 11 |
stable_model_list = [
|
| 12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
controlnet_pose_model_list = [
|
| 17 |
+
"lllyasviel/sd-controlnet-openpose",
|
| 18 |
+
"thibaud/controlnet-sd21-openpose-diffusers",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
data_list = [
|
| 26 |
+
"data/test.png",
|
| 27 |
+
]
|
| 28 |
|
| 29 |
+
|
| 30 |
+
def controlnet_pose(image_path: str, controlnet_pose_model_path: str):
|
| 31 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
|
| 33 |
image = Image.open(image_path)
|
| 34 |
image = openpose(image)
|
| 35 |
|
| 36 |
controlnet = ControlNetModel.from_pretrained(
|
| 37 |
+
controlnet_pose_model_path, torch_dtype=torch.float16
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
return controlnet, image
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
def stable_diffusion_controlnet_pose(
|
| 44 |
+
image_path: str,
|
| 45 |
+
stable_model_path: str,
|
| 46 |
+
controlnet_pose_model_path: str,
|
| 47 |
+
prompt: str,
|
| 48 |
+
negative_prompt: str,
|
| 49 |
+
guidance_scale: int,
|
| 50 |
+
num_inference_step: int,
|
| 51 |
+
):
|
| 52 |
+
|
| 53 |
+
controlnet, image = controlnet_pose(
|
| 54 |
+
image_path=image_path,
|
| 55 |
+
controlnet_pose_model_path=controlnet_pose_model_path,
|
| 56 |
+
)
|
| 57 |
|
| 58 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 59 |
+
pretrained_model_name_or_path=-stable_model_path,
|
| 60 |
+
controlnet=controlnet,
|
| 61 |
+
safety_checker=None,
|
| 62 |
+
torch_dtype=torch.float16,
|
| 63 |
)
|
| 64 |
|
| 65 |
pipe.to("cuda")
|
|
|
|
| 67 |
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
|
| 69 |
output = pipe(
|
| 70 |
+
prompt=prompt,
|
| 71 |
+
image=image,
|
| 72 |
+
negative_prompt=negative_prompt,
|
| 73 |
+
num_inference_steps=num_inference_step,
|
| 74 |
+
guidance_scale=guidance_scale,
|
| 75 |
).images
|
| 76 |
|
| 77 |
return output[0]
|
|
|
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
controlnet_pose_image_file = gr.Image(
|
| 85 |
+
type="filepath", label="Image"
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
controlnet_pose_stable_model_id = gr.Dropdown(
|
| 89 |
+
choices=stable_model_list,
|
| 90 |
+
value=stable_model_list[0],
|
| 91 |
+
label="Stable Model Id",
|
| 92 |
)
|
| 93 |
+
|
| 94 |
controlnet_pose_model_id = gr.Dropdown(
|
| 95 |
choices=stable_model_list,
|
| 96 |
value=stable_model_list[1],
|
| 97 |
+
label="ControlNet Model Id",
|
| 98 |
)
|
|
|
|
| 99 |
|
| 100 |
controlnet_pose_prompt = gr.Textbox(
|
| 101 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
controlnet_pose_negative_prompt = gr.Textbox(
|
| 105 |
+
lines=1,
|
| 106 |
+
value=stable_negative_prompt_list[0],
|
| 107 |
+
label="Negative Prompt",
|
| 108 |
)
|
| 109 |
|
| 110 |
with gr.Accordion("Advanced Options", open=False):
|
| 111 |
controlnet_pose_guidance_scale = gr.Slider(
|
| 112 |
+
minimum=0.1,
|
| 113 |
+
maximum=15,
|
| 114 |
+
step=0.1,
|
| 115 |
+
value=7.5,
|
| 116 |
+
label="Guidance Scale",
|
| 117 |
)
|
| 118 |
|
| 119 |
controlnet_pose_num_inference_step = gr.Slider(
|
| 120 |
+
minimum=1,
|
| 121 |
+
maximum=100,
|
| 122 |
+
step=1,
|
| 123 |
+
value=50,
|
| 124 |
+
label="Num Inference Step",
|
| 125 |
)
|
| 126 |
|
| 127 |
+
controlnet_pose_predict = gr.Button(value="Generator")
|
| 128 |
|
| 129 |
with gr.Column():
|
| 130 |
+
output_image = gr.Image(label="Output")
|
| 131 |
+
|
| 132 |
+
gr.Examples(
|
| 133 |
+
fn=stable_diffusion_controlnet_pose,
|
| 134 |
+
examples=[
|
| 135 |
+
[
|
| 136 |
+
data_list[0],
|
| 137 |
+
stable_model_list[0],
|
| 138 |
+
controlnet_pose_model_list[0],
|
| 139 |
+
stable_prompt_list[0],
|
| 140 |
+
stable_negative_prompt_list[0],
|
| 141 |
+
7.5,
|
| 142 |
+
50,
|
| 143 |
+
]
|
| 144 |
+
],
|
| 145 |
+
inputs=[
|
| 146 |
+
controlnet_pose_image_file,
|
| 147 |
+
controlnet_pose_stable_model_id,
|
| 148 |
+
controlnet_pose_model_id,
|
| 149 |
+
controlnet_pose_prompt,
|
| 150 |
+
controlnet_pose_negative_prompt,
|
| 151 |
+
controlnet_pose_guidance_scale,
|
| 152 |
+
controlnet_pose_num_inference_step,
|
| 153 |
+
],
|
| 154 |
+
outputs=[output_image],
|
| 155 |
+
label="ControlNet Pose Example",
|
| 156 |
+
cache_examples=False,
|
| 157 |
+
)
|
| 158 |
controlnet_pose_predict.click(
|
| 159 |
fn=stable_diffusion_controlnet_pose,
|
| 160 |
inputs=[
|
|
|
|
| 166 |
controlnet_pose_guidance_scale,
|
| 167 |
controlnet_pose_num_inference_step,
|
| 168 |
],
|
| 169 |
+
outputs=output_image,
|
| 170 |
)
|
diffusion_webui/controlnet/controlnet_scribble.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import HEDdetector
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
stable_model_list = [
|
| 11 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -13,23 +14,21 @@ stable_model_list = [
|
|
| 13 |
]
|
| 14 |
|
| 15 |
controlnet_hed_model_list = [
|
| 16 |
-
"
|
| 17 |
-
"thibaud/controlnet-sd21-scribble-diffusers"
|
| 18 |
]
|
| 19 |
|
| 20 |
-
stable_prompt_list = [
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
]
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
]
|
| 29 |
|
| 30 |
|
| 31 |
-
def controlnet_scribble(image_path:str, controlnet_hed_model_path:str):
|
| 32 |
-
hed = HEDdetector.from_pretrained(
|
| 33 |
|
| 34 |
image = Image.open(image_path)
|
| 35 |
image = hed(image, scribble=True)
|
|
@@ -40,23 +39,27 @@ def controlnet_scribble(image_path:str, controlnet_hed_model_path:str):
|
|
| 40 |
|
| 41 |
return controlnet, image
|
| 42 |
|
| 43 |
-
def stable_diffusion_controlnet_scribble(
|
| 44 |
-
image_path:str,
|
| 45 |
-
stable_model_path:str,
|
| 46 |
-
controlnet_hed_model_path:str,
|
| 47 |
-
prompt:str,
|
| 48 |
-
negative_prompt:str,
|
| 49 |
-
guidance_scale:int,
|
| 50 |
-
num_inference_step:int,
|
| 51 |
-
):
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 56 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 57 |
-
controlnet=controlnet,
|
| 58 |
-
safety_checker=None,
|
| 59 |
-
torch_dtype=torch.float16
|
| 60 |
)
|
| 61 |
|
| 62 |
pipe.to("cuda")
|
|
@@ -64,70 +67,94 @@ def stable_diffusion_controlnet_scribble(
|
|
| 64 |
pipe.enable_xformers_memory_efficient_attention()
|
| 65 |
|
| 66 |
output = pipe(
|
| 67 |
-
prompt
|
| 68 |
-
image
|
| 69 |
-
negative_prompt
|
| 70 |
-
num_inference_steps
|
| 71 |
-
guidance_scale
|
| 72 |
).images
|
| 73 |
|
| 74 |
return output[0]
|
| 75 |
|
|
|
|
| 76 |
def stable_diffusion_controlnet_scribble_app():
|
| 77 |
with gr.Blocks():
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
controlnet_scribble_image_file = gr.Image(
|
| 81 |
-
type=
|
| 82 |
-
label='Image'
|
| 83 |
)
|
| 84 |
|
| 85 |
controlnet_scribble_stablev1_model_id = gr.Dropdown(
|
| 86 |
-
choices=stable_model_list,
|
| 87 |
-
value=stable_model_list[0],
|
| 88 |
-
label=
|
| 89 |
)
|
| 90 |
-
|
| 91 |
controlnet_scribble_stablev2_model_id = gr.Dropdown(
|
| 92 |
choices=stable_model_list,
|
| 93 |
value=stable_model_list[1],
|
| 94 |
-
label=
|
| 95 |
)
|
| 96 |
|
| 97 |
controlnet_scribble_prompt = gr.Textbox(
|
| 98 |
-
lines=1,
|
| 99 |
-
value=stable_prompt_list[0],
|
| 100 |
-
label='Prompt'
|
| 101 |
)
|
| 102 |
|
| 103 |
controlnet_scribble_negative_prompt = gr.Textbox(
|
| 104 |
-
lines=1,
|
| 105 |
-
value=stable_negative_prompt_list[0],
|
| 106 |
-
label=
|
| 107 |
)
|
| 108 |
|
| 109 |
with gr.Accordion("Advanced Options", open=False):
|
| 110 |
controlnet_scribble_guidance_scale = gr.Slider(
|
| 111 |
-
minimum=0.1,
|
| 112 |
-
maximum=15,
|
| 113 |
-
step=0.1,
|
| 114 |
-
value=7.5,
|
| 115 |
-
label=
|
| 116 |
)
|
| 117 |
|
| 118 |
controlnet_scribble_num_inference_step = gr.Slider(
|
| 119 |
-
minimum=1,
|
| 120 |
-
maximum=100,
|
| 121 |
-
step=1,
|
| 122 |
-
value=50,
|
| 123 |
-
label=
|
| 124 |
)
|
| 125 |
|
| 126 |
-
controlnet_scribble_predict = gr.Button(value=
|
| 127 |
|
| 128 |
with gr.Column():
|
| 129 |
-
output_image = gr.Image(label=
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
controlnet_scribble_predict.click(
|
| 132 |
fn=stable_diffusion_controlnet_scribble,
|
| 133 |
inputs=[
|
|
@@ -139,5 +166,5 @@ def stable_diffusion_controlnet_scribble_app():
|
|
| 139 |
controlnet_scribble_guidance_scale,
|
| 140 |
controlnet_scribble_num_inference_step,
|
| 141 |
],
|
| 142 |
-
outputs=output_image
|
| 143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from controlnet_aux import HEDdetector
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
|
| 11 |
stable_model_list = [
|
| 12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
controlnet_hed_model_list = [
|
| 17 |
+
"lllyasviel/sd-controlnet-scribble",
|
| 18 |
+
"thibaud/controlnet-sd21-scribble-diffusers",
|
| 19 |
]
|
| 20 |
|
| 21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 22 |
+
|
| 23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
| 24 |
|
| 25 |
+
data_list = [
|
| 26 |
+
"data/test.png",
|
| 27 |
+
]
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
+
def controlnet_scribble(image_path: str, controlnet_hed_model_path: str):
|
| 31 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
| 32 |
|
| 33 |
image = Image.open(image_path)
|
| 34 |
image = hed(image, scribble=True)
|
|
|
|
| 39 |
|
| 40 |
return controlnet, image
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
def stable_diffusion_controlnet_scribble(
|
| 44 |
+
image_path: str,
|
| 45 |
+
stable_model_path: str,
|
| 46 |
+
controlnet_hed_model_path: str,
|
| 47 |
+
prompt: str,
|
| 48 |
+
negative_prompt: str,
|
| 49 |
+
guidance_scale: int,
|
| 50 |
+
num_inference_step: int,
|
| 51 |
+
):
|
| 52 |
+
|
| 53 |
+
controlnet, image = controlnet_scribble(
|
| 54 |
+
image_path=image_path,
|
| 55 |
+
controlnet_hed_model_path=controlnet_hed_model_path,
|
| 56 |
+
)
|
| 57 |
|
| 58 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 59 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 60 |
+
controlnet=controlnet,
|
| 61 |
+
safety_checker=None,
|
| 62 |
+
torch_dtype=torch.float16,
|
| 63 |
)
|
| 64 |
|
| 65 |
pipe.to("cuda")
|
|
|
|
| 67 |
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
|
| 69 |
output = pipe(
|
| 70 |
+
prompt=prompt,
|
| 71 |
+
image=image,
|
| 72 |
+
negative_prompt=negative_prompt,
|
| 73 |
+
num_inference_steps=num_inference_step,
|
| 74 |
+
guidance_scale=guidance_scale,
|
| 75 |
).images
|
| 76 |
|
| 77 |
return output[0]
|
| 78 |
|
| 79 |
+
|
| 80 |
def stable_diffusion_controlnet_scribble_app():
|
| 81 |
with gr.Blocks():
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
controlnet_scribble_image_file = gr.Image(
|
| 85 |
+
type="filepath", label="Image"
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
controlnet_scribble_stablev1_model_id = gr.Dropdown(
|
| 89 |
+
choices=stable_model_list,
|
| 90 |
+
value=stable_model_list[0],
|
| 91 |
+
label="Stable v1.5 Model Id",
|
| 92 |
)
|
| 93 |
+
|
| 94 |
controlnet_scribble_stablev2_model_id = gr.Dropdown(
|
| 95 |
choices=stable_model_list,
|
| 96 |
value=stable_model_list[1],
|
| 97 |
+
label="Stable v2.1 Model Id",
|
| 98 |
)
|
| 99 |
|
| 100 |
controlnet_scribble_prompt = gr.Textbox(
|
| 101 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
controlnet_scribble_negative_prompt = gr.Textbox(
|
| 105 |
+
lines=1,
|
| 106 |
+
value=stable_negative_prompt_list[0],
|
| 107 |
+
label="Negative Prompt",
|
| 108 |
)
|
| 109 |
|
| 110 |
with gr.Accordion("Advanced Options", open=False):
|
| 111 |
controlnet_scribble_guidance_scale = gr.Slider(
|
| 112 |
+
minimum=0.1,
|
| 113 |
+
maximum=15,
|
| 114 |
+
step=0.1,
|
| 115 |
+
value=7.5,
|
| 116 |
+
label="Guidance Scale",
|
| 117 |
)
|
| 118 |
|
| 119 |
controlnet_scribble_num_inference_step = gr.Slider(
|
| 120 |
+
minimum=1,
|
| 121 |
+
maximum=100,
|
| 122 |
+
step=1,
|
| 123 |
+
value=50,
|
| 124 |
+
label="Num Inference Step",
|
| 125 |
)
|
| 126 |
|
| 127 |
+
controlnet_scribble_predict = gr.Button(value="Generator")
|
| 128 |
|
| 129 |
with gr.Column():
|
| 130 |
+
output_image = gr.Image(label="Output")
|
| 131 |
+
|
| 132 |
+
gr.Examples(
|
| 133 |
+
fn=stable_diffusion_controlnet_scribble,
|
| 134 |
+
examples=[
|
| 135 |
+
[
|
| 136 |
+
data_list[0],
|
| 137 |
+
stable_model_list[0],
|
| 138 |
+
controlnet_hed_model_list[0],
|
| 139 |
+
stable_prompt_list[0],
|
| 140 |
+
stable_negative_prompt_list[0],
|
| 141 |
+
7.5,
|
| 142 |
+
50,
|
| 143 |
+
],
|
| 144 |
+
],
|
| 145 |
+
inputs=[
|
| 146 |
+
controlnet_scribble_image_file,
|
| 147 |
+
controlnet_scribble_stablev1_model_id,
|
| 148 |
+
controlnet_scribble_stablev2_model_id,
|
| 149 |
+
controlnet_scribble_prompt,
|
| 150 |
+
controlnet_scribble_negative_prompt,
|
| 151 |
+
controlnet_scribble_guidance_scale,
|
| 152 |
+
controlnet_scribble_num_inference_step,
|
| 153 |
+
],
|
| 154 |
+
outputs=[output_image],
|
| 155 |
+
label="ControlNet Scribble Example",
|
| 156 |
+
cache_examples=False,
|
| 157 |
+
)
|
| 158 |
controlnet_scribble_predict.click(
|
| 159 |
fn=stable_diffusion_controlnet_scribble,
|
| 160 |
inputs=[
|
|
|
|
| 166 |
controlnet_scribble_guidance_scale,
|
| 167 |
controlnet_scribble_num_inference_step,
|
| 168 |
],
|
| 169 |
+
outputs=output_image,
|
| 170 |
)
|
diffusion_webui/controlnet/controlnet_seg.py
CHANGED
|
@@ -1,86 +1,200 @@
|
|
| 1 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import (StableDiffusionControlNetPipeline,
|
| 4 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
from PIL import Image
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
stable_model_list = [
|
| 13 |
"runwayml/stable-diffusion-v1-5",
|
| 14 |
-
"stabilityai/stable-diffusion-2",
|
| 15 |
-
"stabilityai/stable-diffusion-2-base",
|
| 16 |
-
"stabilityai/stable-diffusion-2-1",
|
| 17 |
-
"stabilityai/stable-diffusion-2-1-base"
|
| 18 |
]
|
| 19 |
|
| 20 |
-
stable_prompt_list = [
|
| 21 |
-
"a photo of a man.",
|
| 22 |
-
"a photo of a girl."
|
| 23 |
-
]
|
| 24 |
|
| 25 |
-
stable_negative_prompt_list = [
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def ade_palette():
|
| 32 |
"""ADE20K palette that maps each class to RGB values."""
|
| 33 |
-
return [
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 79 |
|
| 80 |
with torch.no_grad():
|
| 81 |
outputs = image_segmentor(pixel_values)
|
| 82 |
|
| 83 |
-
seg = image_processor.post_process_semantic_segmentation(
|
|
|
|
|
|
|
| 84 |
|
| 85 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 86 |
palette = np.array(ade_palette())
|
|
@@ -91,28 +205,28 @@ def controlnet_mlsd(image_path:str):
|
|
| 91 |
color_seg = color_seg.astype(np.uint8)
|
| 92 |
image = Image.fromarray(color_seg)
|
| 93 |
controlnet = ControlNetModel.from_pretrained(
|
| 94 |
-
"
|
| 95 |
)
|
| 96 |
|
| 97 |
return controlnet, image
|
| 98 |
|
| 99 |
|
| 100 |
def stable_diffusion_controlnet_seg(
|
| 101 |
-
image_path:str,
|
| 102 |
-
model_path:str,
|
| 103 |
-
prompt:str,
|
| 104 |
-
negative_prompt:str,
|
| 105 |
-
guidance_scale:int,
|
| 106 |
-
num_inference_step:int,
|
| 107 |
-
|
| 108 |
|
| 109 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 110 |
|
| 111 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 112 |
-
pretrained_model_name_or_path=model_path,
|
| 113 |
-
controlnet=controlnet,
|
| 114 |
-
safety_checker=None,
|
| 115 |
-
torch_dtype=torch.float16
|
| 116 |
)
|
| 117 |
|
| 118 |
pipe.to("cuda")
|
|
@@ -120,64 +234,87 @@ def stable_diffusion_controlnet_seg(
|
|
| 120 |
pipe.enable_xformers_memory_efficient_attention()
|
| 121 |
|
| 122 |
output = pipe(
|
| 123 |
-
prompt
|
| 124 |
-
image
|
| 125 |
-
negative_prompt
|
| 126 |
-
num_inference_steps
|
| 127 |
-
guidance_scale
|
| 128 |
).images
|
| 129 |
|
| 130 |
return output[0]
|
| 131 |
|
|
|
|
| 132 |
def stable_diffusion_controlnet_seg_app():
|
| 133 |
with gr.Blocks():
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column():
|
| 136 |
controlnet_seg_image_file = gr.Image(
|
| 137 |
-
type=
|
| 138 |
-
label='Image'
|
| 139 |
)
|
| 140 |
|
| 141 |
controlnet_seg_model_id = gr.Dropdown(
|
| 142 |
-
choices=stable_model_list,
|
| 143 |
-
value=stable_model_list[0],
|
| 144 |
-
label=
|
| 145 |
)
|
| 146 |
|
| 147 |
controlnet_seg_prompt = gr.Textbox(
|
| 148 |
-
lines=1,
|
| 149 |
-
value=stable_prompt_list[0],
|
| 150 |
-
label='Prompt'
|
| 151 |
)
|
| 152 |
|
| 153 |
controlnet_seg_negative_prompt = gr.Textbox(
|
| 154 |
-
lines=1,
|
| 155 |
-
value=stable_negative_prompt_list[0],
|
| 156 |
-
label=
|
| 157 |
)
|
| 158 |
|
| 159 |
with gr.Accordion("Advanced Options", open=False):
|
| 160 |
controlnet_seg_guidance_scale = gr.Slider(
|
| 161 |
-
minimum=0.1,
|
| 162 |
-
maximum=15,
|
| 163 |
-
step=0.1,
|
| 164 |
-
value=7.5,
|
| 165 |
-
label=
|
| 166 |
)
|
| 167 |
|
| 168 |
controlnet_seg_num_inference_step = gr.Slider(
|
| 169 |
-
minimum=1,
|
| 170 |
-
maximum=100,
|
| 171 |
-
step=1,
|
| 172 |
-
value=50,
|
| 173 |
-
label=
|
| 174 |
)
|
| 175 |
|
| 176 |
-
controlnet_seg_predict = gr.Button(value=
|
| 177 |
|
| 178 |
with gr.Column():
|
| 179 |
-
output_image = gr.Image(label=
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
controlnet_seg_predict.click(
|
| 182 |
fn=stable_diffusion_controlnet_seg,
|
| 183 |
inputs=[
|
|
@@ -190,4 +327,3 @@ def stable_diffusion_controlnet_seg_app():
|
|
| 190 |
],
|
| 191 |
outputs=[output_image],
|
| 192 |
)
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 11 |
|
| 12 |
stable_model_list = [
|
| 13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 19 |
+
|
| 20 |
+
data_list = [
|
| 21 |
+
"data/test.png",
|
| 22 |
+
]
|
| 23 |
|
| 24 |
|
| 25 |
def ade_palette():
|
| 26 |
"""ADE20K palette that maps each class to RGB values."""
|
| 27 |
+
return [
|
| 28 |
+
[120, 120, 120],
|
| 29 |
+
[180, 120, 120],
|
| 30 |
+
[6, 230, 230],
|
| 31 |
+
[80, 50, 50],
|
| 32 |
+
[4, 200, 3],
|
| 33 |
+
[120, 120, 80],
|
| 34 |
+
[140, 140, 140],
|
| 35 |
+
[204, 5, 255],
|
| 36 |
+
[230, 230, 230],
|
| 37 |
+
[4, 250, 7],
|
| 38 |
+
[224, 5, 255],
|
| 39 |
+
[235, 255, 7],
|
| 40 |
+
[150, 5, 61],
|
| 41 |
+
[120, 120, 70],
|
| 42 |
+
[8, 255, 51],
|
| 43 |
+
[255, 6, 82],
|
| 44 |
+
[143, 255, 140],
|
| 45 |
+
[204, 255, 4],
|
| 46 |
+
[255, 51, 7],
|
| 47 |
+
[204, 70, 3],
|
| 48 |
+
[0, 102, 200],
|
| 49 |
+
[61, 230, 250],
|
| 50 |
+
[255, 6, 51],
|
| 51 |
+
[11, 102, 255],
|
| 52 |
+
[255, 7, 71],
|
| 53 |
+
[255, 9, 224],
|
| 54 |
+
[9, 7, 230],
|
| 55 |
+
[220, 220, 220],
|
| 56 |
+
[255, 9, 92],
|
| 57 |
+
[112, 9, 255],
|
| 58 |
+
[8, 255, 214],
|
| 59 |
+
[7, 255, 224],
|
| 60 |
+
[255, 184, 6],
|
| 61 |
+
[10, 255, 71],
|
| 62 |
+
[255, 41, 10],
|
| 63 |
+
[7, 255, 255],
|
| 64 |
+
[224, 255, 8],
|
| 65 |
+
[102, 8, 255],
|
| 66 |
+
[255, 61, 6],
|
| 67 |
+
[255, 194, 7],
|
| 68 |
+
[255, 122, 8],
|
| 69 |
+
[0, 255, 20],
|
| 70 |
+
[255, 8, 41],
|
| 71 |
+
[255, 5, 153],
|
| 72 |
+
[6, 51, 255],
|
| 73 |
+
[235, 12, 255],
|
| 74 |
+
[160, 150, 20],
|
| 75 |
+
[0, 163, 255],
|
| 76 |
+
[140, 140, 140],
|
| 77 |
+
[250, 10, 15],
|
| 78 |
+
[20, 255, 0],
|
| 79 |
+
[31, 255, 0],
|
| 80 |
+
[255, 31, 0],
|
| 81 |
+
[255, 224, 0],
|
| 82 |
+
[153, 255, 0],
|
| 83 |
+
[0, 0, 255],
|
| 84 |
+
[255, 71, 0],
|
| 85 |
+
[0, 235, 255],
|
| 86 |
+
[0, 173, 255],
|
| 87 |
+
[31, 0, 255],
|
| 88 |
+
[11, 200, 200],
|
| 89 |
+
[255, 82, 0],
|
| 90 |
+
[0, 255, 245],
|
| 91 |
+
[0, 61, 255],
|
| 92 |
+
[0, 255, 112],
|
| 93 |
+
[0, 255, 133],
|
| 94 |
+
[255, 0, 0],
|
| 95 |
+
[255, 163, 0],
|
| 96 |
+
[255, 102, 0],
|
| 97 |
+
[194, 255, 0],
|
| 98 |
+
[0, 143, 255],
|
| 99 |
+
[51, 255, 0],
|
| 100 |
+
[0, 82, 255],
|
| 101 |
+
[0, 255, 41],
|
| 102 |
+
[0, 255, 173],
|
| 103 |
+
[10, 0, 255],
|
| 104 |
+
[173, 255, 0],
|
| 105 |
+
[0, 255, 153],
|
| 106 |
+
[255, 92, 0],
|
| 107 |
+
[255, 0, 255],
|
| 108 |
+
[255, 0, 245],
|
| 109 |
+
[255, 0, 102],
|
| 110 |
+
[255, 173, 0],
|
| 111 |
+
[255, 0, 20],
|
| 112 |
+
[255, 184, 184],
|
| 113 |
+
[0, 31, 255],
|
| 114 |
+
[0, 255, 61],
|
| 115 |
+
[0, 71, 255],
|
| 116 |
+
[255, 0, 204],
|
| 117 |
+
[0, 255, 194],
|
| 118 |
+
[0, 255, 82],
|
| 119 |
+
[0, 10, 255],
|
| 120 |
+
[0, 112, 255],
|
| 121 |
+
[51, 0, 255],
|
| 122 |
+
[0, 194, 255],
|
| 123 |
+
[0, 122, 255],
|
| 124 |
+
[0, 255, 163],
|
| 125 |
+
[255, 153, 0],
|
| 126 |
+
[0, 255, 10],
|
| 127 |
+
[255, 112, 0],
|
| 128 |
+
[143, 255, 0],
|
| 129 |
+
[82, 0, 255],
|
| 130 |
+
[163, 255, 0],
|
| 131 |
+
[255, 235, 0],
|
| 132 |
+
[8, 184, 170],
|
| 133 |
+
[133, 0, 255],
|
| 134 |
+
[0, 255, 92],
|
| 135 |
+
[184, 0, 255],
|
| 136 |
+
[255, 0, 31],
|
| 137 |
+
[0, 184, 255],
|
| 138 |
+
[0, 214, 255],
|
| 139 |
+
[255, 0, 112],
|
| 140 |
+
[92, 255, 0],
|
| 141 |
+
[0, 224, 255],
|
| 142 |
+
[112, 224, 255],
|
| 143 |
+
[70, 184, 160],
|
| 144 |
+
[163, 0, 255],
|
| 145 |
+
[153, 0, 255],
|
| 146 |
+
[71, 255, 0],
|
| 147 |
+
[255, 0, 163],
|
| 148 |
+
[255, 204, 0],
|
| 149 |
+
[255, 0, 143],
|
| 150 |
+
[0, 255, 235],
|
| 151 |
+
[133, 255, 0],
|
| 152 |
+
[255, 0, 235],
|
| 153 |
+
[245, 0, 255],
|
| 154 |
+
[255, 0, 122],
|
| 155 |
+
[255, 245, 0],
|
| 156 |
+
[10, 190, 212],
|
| 157 |
+
[214, 255, 0],
|
| 158 |
+
[0, 204, 255],
|
| 159 |
+
[20, 0, 255],
|
| 160 |
+
[255, 255, 0],
|
| 161 |
+
[0, 153, 255],
|
| 162 |
+
[0, 41, 255],
|
| 163 |
+
[0, 255, 204],
|
| 164 |
+
[41, 0, 255],
|
| 165 |
+
[41, 255, 0],
|
| 166 |
+
[173, 0, 255],
|
| 167 |
+
[0, 245, 255],
|
| 168 |
+
[71, 0, 255],
|
| 169 |
+
[122, 0, 255],
|
| 170 |
+
[0, 255, 184],
|
| 171 |
+
[0, 92, 255],
|
| 172 |
+
[184, 255, 0],
|
| 173 |
+
[0, 133, 255],
|
| 174 |
+
[255, 214, 0],
|
| 175 |
+
[25, 194, 194],
|
| 176 |
+
[102, 255, 0],
|
| 177 |
+
[92, 0, 255],
|
| 178 |
+
]
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def controlnet_mlsd(image_path: str):
|
| 182 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
| 183 |
+
"openmmlab/upernet-convnext-small"
|
| 184 |
+
)
|
| 185 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
| 186 |
+
"openmmlab/upernet-convnext-small"
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
image = Image.open(image_path).convert("RGB")
|
| 190 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 191 |
|
| 192 |
with torch.no_grad():
|
| 193 |
outputs = image_segmentor(pixel_values)
|
| 194 |
|
| 195 |
+
seg = image_processor.post_process_semantic_segmentation(
|
| 196 |
+
outputs, target_sizes=[image.size[::-1]]
|
| 197 |
+
)[0]
|
| 198 |
|
| 199 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 200 |
palette = np.array(ade_palette())
|
|
|
|
| 205 |
color_seg = color_seg.astype(np.uint8)
|
| 206 |
image = Image.fromarray(color_seg)
|
| 207 |
controlnet = ControlNetModel.from_pretrained(
|
| 208 |
+
"lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16
|
| 209 |
)
|
| 210 |
|
| 211 |
return controlnet, image
|
| 212 |
|
| 213 |
|
| 214 |
def stable_diffusion_controlnet_seg(
|
| 215 |
+
image_path: str,
|
| 216 |
+
model_path: str,
|
| 217 |
+
prompt: str,
|
| 218 |
+
negative_prompt: str,
|
| 219 |
+
guidance_scale: int,
|
| 220 |
+
num_inference_step: int,
|
| 221 |
+
):
|
| 222 |
|
| 223 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 224 |
|
| 225 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 226 |
+
pretrained_model_name_or_path=model_path,
|
| 227 |
+
controlnet=controlnet,
|
| 228 |
+
safety_checker=None,
|
| 229 |
+
torch_dtype=torch.float16,
|
| 230 |
)
|
| 231 |
|
| 232 |
pipe.to("cuda")
|
|
|
|
| 234 |
pipe.enable_xformers_memory_efficient_attention()
|
| 235 |
|
| 236 |
output = pipe(
|
| 237 |
+
prompt=prompt,
|
| 238 |
+
image=image,
|
| 239 |
+
negative_prompt=negative_prompt,
|
| 240 |
+
num_inference_steps=num_inference_step,
|
| 241 |
+
guidance_scale=guidance_scale,
|
| 242 |
).images
|
| 243 |
|
| 244 |
return output[0]
|
| 245 |
|
| 246 |
+
|
| 247 |
def stable_diffusion_controlnet_seg_app():
|
| 248 |
with gr.Blocks():
|
| 249 |
with gr.Row():
|
| 250 |
with gr.Column():
|
| 251 |
controlnet_seg_image_file = gr.Image(
|
| 252 |
+
type="filepath", label="Image"
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
controlnet_seg_model_id = gr.Dropdown(
|
| 256 |
+
choices=stable_model_list,
|
| 257 |
+
value=stable_model_list[0],
|
| 258 |
+
label="Stable Model Id",
|
| 259 |
)
|
| 260 |
|
| 261 |
controlnet_seg_prompt = gr.Textbox(
|
| 262 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 263 |
)
|
| 264 |
|
| 265 |
controlnet_seg_negative_prompt = gr.Textbox(
|
| 266 |
+
lines=1,
|
| 267 |
+
value=stable_negative_prompt_list[0],
|
| 268 |
+
label="Negative Prompt",
|
| 269 |
)
|
| 270 |
|
| 271 |
with gr.Accordion("Advanced Options", open=False):
|
| 272 |
controlnet_seg_guidance_scale = gr.Slider(
|
| 273 |
+
minimum=0.1,
|
| 274 |
+
maximum=15,
|
| 275 |
+
step=0.1,
|
| 276 |
+
value=7.5,
|
| 277 |
+
label="Guidance Scale",
|
| 278 |
)
|
| 279 |
|
| 280 |
controlnet_seg_num_inference_step = gr.Slider(
|
| 281 |
+
minimum=1,
|
| 282 |
+
maximum=100,
|
| 283 |
+
step=1,
|
| 284 |
+
value=50,
|
| 285 |
+
label="Num Inference Step",
|
| 286 |
)
|
| 287 |
|
| 288 |
+
controlnet_seg_predict = gr.Button(value="Generator")
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
+
output_image = gr.Image(label="Output")
|
| 292 |
+
|
| 293 |
+
gr.Examples(
|
| 294 |
+
fn=stable_diffusion_controlnet_seg,
|
| 295 |
+
examples=[
|
| 296 |
+
[
|
| 297 |
+
data_list[0],
|
| 298 |
+
stable_model_list[0],
|
| 299 |
+
stable_prompt_list[0],
|
| 300 |
+
stable_negative_prompt_list[0],
|
| 301 |
+
7.5,
|
| 302 |
+
50,
|
| 303 |
+
],
|
| 304 |
+
],
|
| 305 |
+
inputs=[
|
| 306 |
+
controlnet_seg_image_file,
|
| 307 |
+
controlnet_seg_model_id,
|
| 308 |
+
controlnet_seg_prompt,
|
| 309 |
+
controlnet_seg_negative_prompt,
|
| 310 |
+
controlnet_seg_guidance_scale,
|
| 311 |
+
controlnet_seg_num_inference_step,
|
| 312 |
+
],
|
| 313 |
+
outputs=[output_image],
|
| 314 |
+
cache_examples=False,
|
| 315 |
+
label="ControlNet Segmentation Example",
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
controlnet_seg_predict.click(
|
| 319 |
fn=stable_diffusion_controlnet_seg,
|
| 320 |
inputs=[
|
|
|
|
| 327 |
],
|
| 328 |
outputs=[output_image],
|
| 329 |
)
|
|
|
diffusion_webui/helpers.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion_webui.controlnet.controlnet_canny import (
|
| 2 |
+
stable_diffusion_controlnet_canny_app,
|
| 3 |
+
)
|
| 4 |
+
from diffusion_webui.controlnet.controlnet_depth import (
|
| 5 |
+
stable_diffusion_controlnet_depth_app,
|
| 6 |
+
)
|
| 7 |
+
from diffusion_webui.controlnet.controlnet_hed import (
|
| 8 |
+
stable_diffusion_controlnet_hed_app,
|
| 9 |
+
)
|
| 10 |
+
from diffusion_webui.controlnet.controlnet_mlsd import (
|
| 11 |
+
stable_diffusion_controlnet_mlsd_app,
|
| 12 |
+
)
|
| 13 |
+
from diffusion_webui.controlnet.controlnet_pose import (
|
| 14 |
+
stable_diffusion_controlnet_pose_app,
|
| 15 |
+
)
|
| 16 |
+
from diffusion_webui.controlnet.controlnet_scribble import (
|
| 17 |
+
stable_diffusion_controlnet_scribble_app,
|
| 18 |
+
)
|
| 19 |
+
from diffusion_webui.controlnet.controlnet_seg import (
|
| 20 |
+
stable_diffusion_controlnet_seg_app,
|
| 21 |
+
)
|
| 22 |
+
from diffusion_webui.stable_diffusion.img2img_app import (
|
| 23 |
+
stable_diffusion_img2img_app,
|
| 24 |
+
)
|
| 25 |
+
from diffusion_webui.stable_diffusion.inpaint_app import (
|
| 26 |
+
stable_diffusion_inpaint_app,
|
| 27 |
+
)
|
| 28 |
+
from diffusion_webui.stable_diffusion.keras_txt2img import (
|
| 29 |
+
keras_stable_diffusion_app,
|
| 30 |
+
)
|
| 31 |
+
from diffusion_webui.stable_diffusion.text2img_app import (
|
| 32 |
+
stable_diffusion_text2img_app,
|
| 33 |
+
)
|
diffusion_webui/stable_diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (191 Bytes). View file
|
|
|
diffusion_webui/stable_diffusion/__pycache__/img2img_app.cpython-38.pyc
ADDED
|
Binary file (2.55 kB). View file
|
|
|
diffusion_webui/stable_diffusion/__pycache__/inpaint_app.cpython-38.pyc
ADDED
|
Binary file (2.42 kB). View file
|
|
|
diffusion_webui/stable_diffusion/__pycache__/keras_txt2img.cpython-38.pyc
ADDED
|
Binary file (2.79 kB). View file
|
|
|
diffusion_webui/stable_diffusion/__pycache__/text2img_app.cpython-38.pyc
ADDED
|
Binary file (2.74 kB). View file
|
|
|
diffusion_webui/stable_diffusion/img2img_app.py
CHANGED
|
@@ -1,54 +1,46 @@
|
|
| 1 |
-
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
|
| 2 |
-
|
| 3 |
-
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
| 7 |
stable_model_list = [
|
| 8 |
"runwayml/stable-diffusion-v1-5",
|
| 9 |
-
"stabilityai/stable-diffusion-2",
|
| 10 |
-
"stabilityai/stable-diffusion-2-base",
|
| 11 |
"stabilityai/stable-diffusion-2-1",
|
| 12 |
-
"stabilityai/stable-diffusion-2-1-base"
|
| 13 |
]
|
| 14 |
|
| 15 |
-
stable_prompt_list = [
|
| 16 |
-
"a photo of a man.",
|
| 17 |
-
"a photo of a girl."
|
| 18 |
-
]
|
| 19 |
|
| 20 |
-
stable_negative_prompt_list = [
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
def stable_diffusion_img2img(
|
| 27 |
-
image_path:str,
|
| 28 |
-
model_path:str,
|
| 29 |
-
prompt:str,
|
| 30 |
-
negative_prompt:str,
|
| 31 |
-
guidance_scale:int,
|
| 32 |
-
num_inference_step:int,
|
| 33 |
-
|
| 34 |
|
| 35 |
image = Image.open(image_path)
|
| 36 |
|
| 37 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 38 |
-
model_path,
|
| 39 |
-
safety_checker=None,
|
| 40 |
-
torch_dtype=torch.float16
|
| 41 |
)
|
| 42 |
pipe.to("cuda")
|
| 43 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 44 |
pipe.enable_xformers_memory_efficient_attention()
|
| 45 |
|
| 46 |
output = pipe(
|
| 47 |
-
prompt
|
| 48 |
-
image
|
| 49 |
-
negative_prompt
|
| 50 |
-
num_inference_steps
|
| 51 |
-
guidance_scale
|
| 52 |
).images
|
| 53 |
|
| 54 |
return output[0]
|
|
@@ -59,50 +51,72 @@ def stable_diffusion_img2img_app():
|
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column():
|
| 61 |
image2image2_image_file = gr.Image(
|
| 62 |
-
type=
|
| 63 |
-
label='Image'
|
| 64 |
)
|
| 65 |
|
| 66 |
image2image_model_path = gr.Dropdown(
|
| 67 |
-
choices=stable_model_list,
|
| 68 |
-
value=stable_model_list[0],
|
| 69 |
-
label=
|
| 70 |
)
|
| 71 |
|
| 72 |
image2image_prompt = gr.Textbox(
|
| 73 |
-
lines=1,
|
| 74 |
-
value=stable_prompt_list[0],
|
| 75 |
-
label='Prompt'
|
| 76 |
)
|
| 77 |
|
| 78 |
image2image_negative_prompt = gr.Textbox(
|
| 79 |
-
lines=1,
|
| 80 |
-
value=stable_negative_prompt_list[0],
|
| 81 |
-
label=
|
| 82 |
)
|
| 83 |
|
| 84 |
with gr.Accordion("Advanced Options", open=False):
|
| 85 |
image2image_guidance_scale = gr.Slider(
|
| 86 |
-
minimum=0.1,
|
| 87 |
-
maximum=15,
|
| 88 |
-
step=0.1,
|
| 89 |
-
value=7.5,
|
| 90 |
-
label=
|
| 91 |
)
|
| 92 |
|
| 93 |
image2image_num_inference_step = gr.Slider(
|
| 94 |
-
minimum=1,
|
| 95 |
-
maximum=100,
|
| 96 |
-
step=1,
|
| 97 |
-
value=50,
|
| 98 |
-
label=
|
| 99 |
)
|
| 100 |
|
| 101 |
-
image2image_predict = gr.Button(value=
|
| 102 |
|
| 103 |
with gr.Column():
|
| 104 |
-
output_image = gr.Image(label=
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
image2image_predict.click(
|
| 107 |
fn=stable_diffusion_img2img,
|
| 108 |
inputs=[
|
|
@@ -112,6 +126,6 @@ def stable_diffusion_img2img_app():
|
|
| 112 |
image2image_negative_prompt,
|
| 113 |
image2image_guidance_scale,
|
| 114 |
image2image_num_inference_step,
|
| 115 |
-
],
|
| 116 |
outputs=[output_image],
|
| 117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline
|
| 4 |
+
from PIL import Image
|
| 5 |
|
| 6 |
stable_model_list = [
|
| 7 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
|
|
| 8 |
"stabilityai/stable-diffusion-2-1",
|
|
|
|
| 9 |
]
|
| 10 |
|
| 11 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 14 |
+
|
| 15 |
+
data_list = [
|
| 16 |
+
"data/test.png",
|
| 17 |
+
]
|
| 18 |
|
| 19 |
|
| 20 |
def stable_diffusion_img2img(
|
| 21 |
+
image_path: str,
|
| 22 |
+
model_path: str,
|
| 23 |
+
prompt: str,
|
| 24 |
+
negative_prompt: str,
|
| 25 |
+
guidance_scale: int,
|
| 26 |
+
num_inference_step: int,
|
| 27 |
+
):
|
| 28 |
|
| 29 |
image = Image.open(image_path)
|
| 30 |
|
| 31 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 32 |
+
model_path, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
pipe.to("cuda")
|
| 35 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 36 |
pipe.enable_xformers_memory_efficient_attention()
|
| 37 |
|
| 38 |
output = pipe(
|
| 39 |
+
prompt=prompt,
|
| 40 |
+
image=image,
|
| 41 |
+
negative_prompt=negative_prompt,
|
| 42 |
+
num_inference_steps=num_inference_step,
|
| 43 |
+
guidance_scale=guidance_scale,
|
| 44 |
).images
|
| 45 |
|
| 46 |
return output[0]
|
|
|
|
| 51 |
with gr.Row():
|
| 52 |
with gr.Column():
|
| 53 |
image2image2_image_file = gr.Image(
|
| 54 |
+
type="filepath", label="Image"
|
|
|
|
| 55 |
)
|
| 56 |
|
| 57 |
image2image_model_path = gr.Dropdown(
|
| 58 |
+
choices=stable_model_list,
|
| 59 |
+
value=stable_model_list[0],
|
| 60 |
+
label="Image-Image Model Id",
|
| 61 |
)
|
| 62 |
|
| 63 |
image2image_prompt = gr.Textbox(
|
| 64 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
image2image_negative_prompt = gr.Textbox(
|
| 68 |
+
lines=1,
|
| 69 |
+
value=stable_negative_prompt_list[0],
|
| 70 |
+
label="Negative Prompt",
|
| 71 |
)
|
| 72 |
|
| 73 |
with gr.Accordion("Advanced Options", open=False):
|
| 74 |
image2image_guidance_scale = gr.Slider(
|
| 75 |
+
minimum=0.1,
|
| 76 |
+
maximum=15,
|
| 77 |
+
step=0.1,
|
| 78 |
+
value=7.5,
|
| 79 |
+
label="Guidance Scale",
|
| 80 |
)
|
| 81 |
|
| 82 |
image2image_num_inference_step = gr.Slider(
|
| 83 |
+
minimum=1,
|
| 84 |
+
maximum=100,
|
| 85 |
+
step=1,
|
| 86 |
+
value=50,
|
| 87 |
+
label="Num Inference Step",
|
| 88 |
)
|
| 89 |
|
| 90 |
+
image2image_predict = gr.Button(value="Generator")
|
| 91 |
|
| 92 |
with gr.Column():
|
| 93 |
+
output_image = gr.Image(label="Output")
|
| 94 |
+
|
| 95 |
+
gr.Examples(
|
| 96 |
+
fn=stable_diffusion_img2img,
|
| 97 |
+
examples=[
|
| 98 |
+
[
|
| 99 |
+
data_list[0],
|
| 100 |
+
stable_model_list[0],
|
| 101 |
+
stable_prompt_list[0],
|
| 102 |
+
stable_negative_prompt_list[0],
|
| 103 |
+
7.5,
|
| 104 |
+
50,
|
| 105 |
+
],
|
| 106 |
+
],
|
| 107 |
+
inputs=[
|
| 108 |
+
image2image2_image_file,
|
| 109 |
+
image2image_model_path,
|
| 110 |
+
image2image_prompt,
|
| 111 |
+
image2image_negative_prompt,
|
| 112 |
+
image2image_guidance_scale,
|
| 113 |
+
image2image_num_inference_step,
|
| 114 |
+
],
|
| 115 |
+
outputs=[output_image],
|
| 116 |
+
cache_examples=False,
|
| 117 |
+
label="Image-Image Generator",
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
image2image_predict.click(
|
| 121 |
fn=stable_diffusion_img2img,
|
| 122 |
inputs=[
|
|
|
|
| 126 |
image2image_negative_prompt,
|
| 127 |
image2image_guidance_scale,
|
| 128 |
image2image_num_inference_step,
|
| 129 |
+
],
|
| 130 |
outputs=[output_image],
|
| 131 |
)
|
diffusion_webui/stable_diffusion/inpaint_app.py
CHANGED
|
@@ -1,32 +1,25 @@
|
|
| 1 |
-
from diffusers import DiffusionPipeline, DDIMScheduler
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
|
| 6 |
stable_inpiant_model_list = [
|
| 7 |
"stabilityai/stable-diffusion-2-inpainting",
|
| 8 |
-
"runwayml/stable-diffusion-inpainting"
|
| 9 |
]
|
| 10 |
|
| 11 |
-
stable_prompt_list = [
|
| 12 |
-
"a photo of a man.",
|
| 13 |
-
"a photo of a girl."
|
| 14 |
-
]
|
| 15 |
|
| 16 |
-
stable_negative_prompt_list = [
|
| 17 |
-
"bad, ugly",
|
| 18 |
-
"deformed"
|
| 19 |
-
]
|
| 20 |
|
| 21 |
|
| 22 |
def stable_diffusion_inpaint(
|
| 23 |
-
dict:str,
|
| 24 |
-
model_path:str,
|
| 25 |
-
prompt:str,
|
| 26 |
-
negative_prompt:str,
|
| 27 |
-
guidance_scale:int,
|
| 28 |
-
num_inference_step:int,
|
| 29 |
-
|
| 30 |
|
| 31 |
image = dict["image"].convert("RGB").resize((512, 512))
|
| 32 |
mask_image = dict["mask"].convert("RGB").resize((512, 512))
|
|
@@ -35,17 +28,17 @@ def stable_diffusion_inpaint(
|
|
| 35 |
revision="fp16",
|
| 36 |
torch_dtype=torch.float16,
|
| 37 |
)
|
| 38 |
-
pipe.to(
|
| 39 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 40 |
pipe.enable_xformers_memory_efficient_attention()
|
| 41 |
|
| 42 |
output = pipe(
|
| 43 |
-
prompt
|
| 44 |
-
image
|
| 45 |
mask_image=mask_image,
|
| 46 |
-
negative_prompt
|
| 47 |
-
num_inference_steps
|
| 48 |
-
guidance_scale
|
| 49 |
).images
|
| 50 |
|
| 51 |
return output[0]
|
|
@@ -56,54 +49,51 @@ def stable_diffusion_inpaint_app():
|
|
| 56 |
with gr.Row():
|
| 57 |
with gr.Column():
|
| 58 |
inpaint_image_file = gr.Image(
|
| 59 |
-
source=
|
| 60 |
-
tool=
|
| 61 |
-
elem_id="image_upload",
|
| 62 |
-
type="pil",
|
| 63 |
-
label="Upload"
|
| 64 |
)
|
| 65 |
|
| 66 |
inpaint_model_id = gr.Dropdown(
|
| 67 |
-
choices=stable_inpiant_model_list,
|
| 68 |
-
value=stable_inpiant_model_list[0],
|
| 69 |
-
label=
|
| 70 |
)
|
| 71 |
|
| 72 |
inpaint_prompt = gr.Textbox(
|
| 73 |
-
lines=1,
|
| 74 |
-
value=stable_prompt_list[0],
|
| 75 |
-
label='Prompt'
|
| 76 |
)
|
| 77 |
|
| 78 |
inpaint_negative_prompt = gr.Textbox(
|
| 79 |
-
lines=1,
|
| 80 |
-
value=stable_negative_prompt_list[0],
|
| 81 |
-
label=
|
| 82 |
)
|
| 83 |
|
| 84 |
with gr.Accordion("Advanced Options", open=False):
|
| 85 |
inpaint_guidance_scale = gr.Slider(
|
| 86 |
-
minimum=0.1,
|
| 87 |
-
maximum=15,
|
| 88 |
-
step=0.1,
|
| 89 |
-
value=7.5,
|
| 90 |
-
label=
|
| 91 |
)
|
| 92 |
|
| 93 |
inpaint_num_inference_step = gr.Slider(
|
| 94 |
-
minimum=1,
|
| 95 |
-
maximum=100,
|
| 96 |
-
step=1,
|
| 97 |
-
value=50,
|
| 98 |
-
label=
|
| 99 |
)
|
| 100 |
|
| 101 |
-
inpaint_predict = gr.Button(value=
|
| 102 |
|
| 103 |
-
|
| 104 |
with gr.Column():
|
| 105 |
output_image = gr.Gallery(label="Outputs")
|
| 106 |
-
|
| 107 |
inpaint_predict.click(
|
| 108 |
fn=stable_diffusion_inpaint,
|
| 109 |
inputs=[
|
|
@@ -114,6 +104,5 @@ def stable_diffusion_inpaint_app():
|
|
| 114 |
inpaint_guidance_scale,
|
| 115 |
inpaint_num_inference_step,
|
| 116 |
],
|
| 117 |
-
outputs=output_image
|
| 118 |
)
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import DDIMScheduler, DiffusionPipeline
|
| 4 |
|
| 5 |
stable_inpiant_model_list = [
|
| 6 |
"stabilityai/stable-diffusion-2-inpainting",
|
| 7 |
+
"runwayml/stable-diffusion-inpainting",
|
| 8 |
]
|
| 9 |
|
| 10 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def stable_diffusion_inpaint(
|
| 16 |
+
dict: str,
|
| 17 |
+
model_path: str,
|
| 18 |
+
prompt: str,
|
| 19 |
+
negative_prompt: str,
|
| 20 |
+
guidance_scale: int,
|
| 21 |
+
num_inference_step: int,
|
| 22 |
+
):
|
| 23 |
|
| 24 |
image = dict["image"].convert("RGB").resize((512, 512))
|
| 25 |
mask_image = dict["mask"].convert("RGB").resize((512, 512))
|
|
|
|
| 28 |
revision="fp16",
|
| 29 |
torch_dtype=torch.float16,
|
| 30 |
)
|
| 31 |
+
pipe.to("cuda")
|
| 32 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 33 |
pipe.enable_xformers_memory_efficient_attention()
|
| 34 |
|
| 35 |
output = pipe(
|
| 36 |
+
prompt=prompt,
|
| 37 |
+
image=image,
|
| 38 |
mask_image=mask_image,
|
| 39 |
+
negative_prompt=negative_prompt,
|
| 40 |
+
num_inference_steps=num_inference_step,
|
| 41 |
+
guidance_scale=guidance_scale,
|
| 42 |
).images
|
| 43 |
|
| 44 |
return output[0]
|
|
|
|
| 49 |
with gr.Row():
|
| 50 |
with gr.Column():
|
| 51 |
inpaint_image_file = gr.Image(
|
| 52 |
+
source="upload",
|
| 53 |
+
tool="sketch",
|
| 54 |
+
elem_id="image_upload",
|
| 55 |
+
type="pil",
|
| 56 |
+
label="Upload",
|
| 57 |
)
|
| 58 |
|
| 59 |
inpaint_model_id = gr.Dropdown(
|
| 60 |
+
choices=stable_inpiant_model_list,
|
| 61 |
+
value=stable_inpiant_model_list[0],
|
| 62 |
+
label="Inpaint Model Id",
|
| 63 |
)
|
| 64 |
|
| 65 |
inpaint_prompt = gr.Textbox(
|
| 66 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
inpaint_negative_prompt = gr.Textbox(
|
| 70 |
+
lines=1,
|
| 71 |
+
value=stable_negative_prompt_list[0],
|
| 72 |
+
label="Negative Prompt",
|
| 73 |
)
|
| 74 |
|
| 75 |
with gr.Accordion("Advanced Options", open=False):
|
| 76 |
inpaint_guidance_scale = gr.Slider(
|
| 77 |
+
minimum=0.1,
|
| 78 |
+
maximum=15,
|
| 79 |
+
step=0.1,
|
| 80 |
+
value=7.5,
|
| 81 |
+
label="Guidance Scale",
|
| 82 |
)
|
| 83 |
|
| 84 |
inpaint_num_inference_step = gr.Slider(
|
| 85 |
+
minimum=1,
|
| 86 |
+
maximum=100,
|
| 87 |
+
step=1,
|
| 88 |
+
value=50,
|
| 89 |
+
label="Num Inference Step",
|
| 90 |
)
|
| 91 |
|
| 92 |
+
inpaint_predict = gr.Button(value="Generator")
|
| 93 |
|
|
|
|
| 94 |
with gr.Column():
|
| 95 |
output_image = gr.Gallery(label="Outputs")
|
| 96 |
+
|
| 97 |
inpaint_predict.click(
|
| 98 |
fn=stable_diffusion_inpaint,
|
| 99 |
inputs=[
|
|
|
|
| 104 |
inpaint_guidance_scale,
|
| 105 |
inpaint_num_inference_step,
|
| 106 |
],
|
| 107 |
+
outputs=output_image,
|
| 108 |
)
|
|
|
diffusion_webui/stable_diffusion/keras_txt2img.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
|
|
|
|
|
|
| 1 |
from huggingface_hub import from_pretrained_keras
|
| 2 |
from keras_cv import models
|
| 3 |
from tensorflow import keras
|
| 4 |
-
import tensorflow as tf
|
| 5 |
-
import gradio as gr
|
| 6 |
|
| 7 |
keras_model_list = [
|
| 8 |
"keras-dreambooth/keras_diffusion_lowpoly_world",
|
|
@@ -11,105 +11,128 @@ keras_model_list = [
|
|
| 11 |
]
|
| 12 |
|
| 13 |
stable_prompt_list = [
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
stable_negative_prompt_list = [
|
| 19 |
-
"bad, ugly",
|
| 20 |
-
"deformed"
|
| 21 |
-
]
|
| 22 |
|
| 23 |
def keras_stable_diffusion(
|
| 24 |
-
model_path:str,
|
| 25 |
-
prompt:str,
|
| 26 |
-
negative_prompt:str,
|
| 27 |
-
guidance_scale:int,
|
| 28 |
-
num_inference_step:int,
|
| 29 |
-
height:int,
|
| 30 |
-
width:int,
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
with tf.device(
|
| 34 |
keras.mixed_precision.set_global_policy("mixed_float16")
|
| 35 |
-
|
| 36 |
sd_dreambooth_model = models.StableDiffusion(
|
| 37 |
-
img_width=height,
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
db_diffusion_model = from_pretrained_keras(model_path)
|
| 42 |
sd_dreambooth_model._diffusion_model = db_diffusion_model
|
| 43 |
-
|
| 44 |
generated_images = sd_dreambooth_model.text_to_image(
|
| 45 |
prompt=prompt,
|
| 46 |
negative_prompt=negative_prompt,
|
| 47 |
num_steps=num_inference_step,
|
| 48 |
-
unconditional_guidance_scale=guidance_scale
|
| 49 |
)
|
| 50 |
|
| 51 |
return generated_images
|
| 52 |
|
|
|
|
| 53 |
def keras_stable_diffusion_app():
|
| 54 |
with gr.Blocks():
|
| 55 |
with gr.Row():
|
| 56 |
with gr.Column():
|
| 57 |
keras_text2image_model_path = gr.Dropdown(
|
| 58 |
-
choices=keras_model_list,
|
| 59 |
-
value=keras_model_list[0],
|
| 60 |
-
label=
|
| 61 |
)
|
| 62 |
|
| 63 |
keras_text2image_prompt = gr.Textbox(
|
| 64 |
-
lines=1,
|
| 65 |
-
value=stable_prompt_list[0],
|
| 66 |
-
label='Prompt'
|
| 67 |
)
|
| 68 |
|
| 69 |
keras_text2image_negative_prompt = gr.Textbox(
|
| 70 |
-
lines=1,
|
| 71 |
-
value=stable_negative_prompt_list[0],
|
| 72 |
-
label=
|
| 73 |
)
|
| 74 |
|
| 75 |
with gr.Accordion("Advanced Options", open=False):
|
| 76 |
keras_text2image_guidance_scale = gr.Slider(
|
| 77 |
-
minimum=0.1,
|
| 78 |
-
maximum=15,
|
| 79 |
-
step=0.1,
|
| 80 |
-
value=7.5,
|
| 81 |
-
label=
|
| 82 |
)
|
| 83 |
|
| 84 |
keras_text2image_num_inference_step = gr.Slider(
|
| 85 |
-
minimum=1,
|
| 86 |
-
maximum=100,
|
| 87 |
-
step=1,
|
| 88 |
-
value=50,
|
| 89 |
-
label=
|
| 90 |
)
|
| 91 |
|
| 92 |
keras_text2image_height = gr.Slider(
|
| 93 |
-
minimum=128,
|
| 94 |
-
maximum=1280,
|
| 95 |
-
step=32,
|
| 96 |
-
value=512,
|
| 97 |
-
label=
|
| 98 |
)
|
| 99 |
|
| 100 |
keras_text2image_width = gr.Slider(
|
| 101 |
-
minimum=128,
|
| 102 |
-
maximum=1280,
|
| 103 |
-
step=32,
|
| 104 |
-
value=512,
|
| 105 |
-
label=
|
| 106 |
)
|
| 107 |
|
| 108 |
-
keras_text2image_predict = gr.Button(value=
|
| 109 |
-
|
| 110 |
with gr.Column():
|
| 111 |
-
output_image = gr.Gallery(label=
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
keras_text2image_predict.click(
|
| 114 |
fn=keras_stable_diffusion,
|
| 115 |
inputs=[
|
|
@@ -119,7 +142,7 @@ def keras_stable_diffusion_app():
|
|
| 119 |
keras_text2image_guidance_scale,
|
| 120 |
keras_text2image_num_inference_step,
|
| 121 |
keras_text2image_height,
|
| 122 |
-
keras_text2image_width
|
| 123 |
],
|
| 124 |
-
outputs=output_image
|
| 125 |
)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
from huggingface_hub import from_pretrained_keras
|
| 4 |
from keras_cv import models
|
| 5 |
from tensorflow import keras
|
|
|
|
|
|
|
| 6 |
|
| 7 |
keras_model_list = [
|
| 8 |
"keras-dreambooth/keras_diffusion_lowpoly_world",
|
|
|
|
| 11 |
]
|
| 12 |
|
| 13 |
stable_prompt_list = [
|
| 14 |
+
"a photo of lowpoly_world",
|
| 15 |
+
"Flower vase inspired by pink floyd division bell",
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def keras_stable_diffusion(
|
| 22 |
+
model_path: str,
|
| 23 |
+
prompt: str,
|
| 24 |
+
negative_prompt: str,
|
| 25 |
+
guidance_scale: int,
|
| 26 |
+
num_inference_step: int,
|
| 27 |
+
height: int,
|
| 28 |
+
width: int,
|
| 29 |
+
):
|
| 30 |
+
|
| 31 |
+
with tf.device("/GPU:0"):
|
| 32 |
keras.mixed_precision.set_global_policy("mixed_float16")
|
| 33 |
+
|
| 34 |
sd_dreambooth_model = models.StableDiffusion(
|
| 35 |
+
img_width=height, img_height=width
|
| 36 |
+
)
|
| 37 |
+
|
|
|
|
| 38 |
db_diffusion_model = from_pretrained_keras(model_path)
|
| 39 |
sd_dreambooth_model._diffusion_model = db_diffusion_model
|
| 40 |
+
|
| 41 |
generated_images = sd_dreambooth_model.text_to_image(
|
| 42 |
prompt=prompt,
|
| 43 |
negative_prompt=negative_prompt,
|
| 44 |
num_steps=num_inference_step,
|
| 45 |
+
unconditional_guidance_scale=guidance_scale,
|
| 46 |
)
|
| 47 |
|
| 48 |
return generated_images
|
| 49 |
|
| 50 |
+
|
| 51 |
def keras_stable_diffusion_app():
|
| 52 |
with gr.Blocks():
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
keras_text2image_model_path = gr.Dropdown(
|
| 56 |
+
choices=keras_model_list,
|
| 57 |
+
value=keras_model_list[0],
|
| 58 |
+
label="Text-Image Model Id",
|
| 59 |
)
|
| 60 |
|
| 61 |
keras_text2image_prompt = gr.Textbox(
|
| 62 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
keras_text2image_negative_prompt = gr.Textbox(
|
| 66 |
+
lines=1,
|
| 67 |
+
value=stable_negative_prompt_list[0],
|
| 68 |
+
label="Negative Prompt",
|
| 69 |
)
|
| 70 |
|
| 71 |
with gr.Accordion("Advanced Options", open=False):
|
| 72 |
keras_text2image_guidance_scale = gr.Slider(
|
| 73 |
+
minimum=0.1,
|
| 74 |
+
maximum=15,
|
| 75 |
+
step=0.1,
|
| 76 |
+
value=7.5,
|
| 77 |
+
label="Guidance Scale",
|
| 78 |
)
|
| 79 |
|
| 80 |
keras_text2image_num_inference_step = gr.Slider(
|
| 81 |
+
minimum=1,
|
| 82 |
+
maximum=100,
|
| 83 |
+
step=1,
|
| 84 |
+
value=50,
|
| 85 |
+
label="Num Inference Step",
|
| 86 |
)
|
| 87 |
|
| 88 |
keras_text2image_height = gr.Slider(
|
| 89 |
+
minimum=128,
|
| 90 |
+
maximum=1280,
|
| 91 |
+
step=32,
|
| 92 |
+
value=512,
|
| 93 |
+
label="Image Height",
|
| 94 |
)
|
| 95 |
|
| 96 |
keras_text2image_width = gr.Slider(
|
| 97 |
+
minimum=128,
|
| 98 |
+
maximum=1280,
|
| 99 |
+
step=32,
|
| 100 |
+
value=512,
|
| 101 |
+
label="Image Height",
|
| 102 |
)
|
| 103 |
|
| 104 |
+
keras_text2image_predict = gr.Button(value="Generator")
|
| 105 |
+
|
| 106 |
with gr.Column():
|
| 107 |
+
output_image = gr.Gallery(label="Output")
|
| 108 |
+
|
| 109 |
+
gr.Examples(
|
| 110 |
+
fn=keras_stable_diffusion,
|
| 111 |
+
inputs=[
|
| 112 |
+
keras_text2image_model_path,
|
| 113 |
+
keras_text2image_prompt,
|
| 114 |
+
keras_text2image_negative_prompt,
|
| 115 |
+
keras_text2image_guidance_scale,
|
| 116 |
+
keras_text2image_num_inference_step,
|
| 117 |
+
keras_text2image_height,
|
| 118 |
+
keras_text2image_width,
|
| 119 |
+
],
|
| 120 |
+
outputs=[output_image],
|
| 121 |
+
examples=[
|
| 122 |
+
[
|
| 123 |
+
keras_model_list[0],
|
| 124 |
+
stable_prompt_list[0],
|
| 125 |
+
stable_negative_prompt_list[0],
|
| 126 |
+
7.5,
|
| 127 |
+
50,
|
| 128 |
+
512,
|
| 129 |
+
512,
|
| 130 |
+
],
|
| 131 |
+
],
|
| 132 |
+
label="Keras Stable Diffusion Example",
|
| 133 |
+
cache_examples=False,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
keras_text2image_predict.click(
|
| 137 |
fn=keras_stable_diffusion,
|
| 138 |
inputs=[
|
|
|
|
| 142 |
keras_text2image_guidance_scale,
|
| 143 |
keras_text2image_num_inference_step,
|
| 144 |
keras_text2image_height,
|
| 145 |
+
keras_text2image_width,
|
| 146 |
],
|
| 147 |
+
outputs=output_image,
|
| 148 |
)
|
diffusion_webui/stable_diffusion/text2img_app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
stable_model_list = [
|
| 6 |
"runwayml/stable-diffusion-v1-5",
|
|
@@ -10,34 +10,26 @@ stable_model_list = [
|
|
| 10 |
"andite/anything-v4.0",
|
| 11 |
"Lykon/DreamShaper",
|
| 12 |
"nitrosocke/Nitro-Diffusion",
|
| 13 |
-
"dreamlike-art/dreamlike-diffusion-1.0"
|
| 14 |
-
|
| 15 |
]
|
| 16 |
|
| 17 |
-
stable_prompt_list = [
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
]
|
| 21 |
|
| 22 |
-
stable_negative_prompt_list = [
|
| 23 |
-
"bad, ugly",
|
| 24 |
-
"deformed"
|
| 25 |
-
]
|
| 26 |
|
| 27 |
def stable_diffusion_text2img(
|
| 28 |
-
model_path:str,
|
| 29 |
-
prompt:str,
|
| 30 |
-
negative_prompt:str,
|
| 31 |
-
guidance_scale:int,
|
| 32 |
-
num_inference_step:int,
|
| 33 |
-
height:int,
|
| 34 |
-
width:int,
|
| 35 |
-
|
| 36 |
|
| 37 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 38 |
-
model_path,
|
| 39 |
-
safety_checker=None,
|
| 40 |
-
torch_dtype=torch.float16
|
| 41 |
).to("cuda")
|
| 42 |
|
| 43 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
@@ -54,67 +46,91 @@ def stable_diffusion_text2img(
|
|
| 54 |
|
| 55 |
return images[0]
|
| 56 |
|
|
|
|
| 57 |
def stable_diffusion_text2img_app():
|
| 58 |
with gr.Blocks():
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column():
|
| 61 |
text2image_model_path = gr.Dropdown(
|
| 62 |
-
choices=stable_model_list,
|
| 63 |
-
value=stable_model_list[0],
|
| 64 |
-
label=
|
| 65 |
)
|
| 66 |
|
| 67 |
text2image_prompt = gr.Textbox(
|
| 68 |
-
lines=1,
|
| 69 |
-
value=stable_prompt_list[0],
|
| 70 |
-
label='Prompt'
|
| 71 |
)
|
| 72 |
|
| 73 |
text2image_negative_prompt = gr.Textbox(
|
| 74 |
-
lines=1,
|
| 75 |
-
value=stable_negative_prompt_list[0],
|
| 76 |
-
label=
|
| 77 |
)
|
| 78 |
|
| 79 |
with gr.Accordion("Advanced Options", open=False):
|
| 80 |
text2image_guidance_scale = gr.Slider(
|
| 81 |
-
minimum=0.1,
|
| 82 |
-
maximum=15,
|
| 83 |
-
step=0.1,
|
| 84 |
-
value=7.5,
|
| 85 |
-
label=
|
| 86 |
)
|
| 87 |
|
| 88 |
text2image_num_inference_step = gr.Slider(
|
| 89 |
-
minimum=1,
|
| 90 |
-
maximum=100,
|
| 91 |
-
step=1,
|
| 92 |
-
value=50,
|
| 93 |
-
label=
|
| 94 |
)
|
| 95 |
|
| 96 |
text2image_height = gr.Slider(
|
| 97 |
-
minimum=128,
|
| 98 |
-
maximum=1280,
|
| 99 |
-
step=32,
|
| 100 |
-
value=512,
|
| 101 |
-
label=
|
| 102 |
)
|
| 103 |
|
| 104 |
text2image_width = gr.Slider(
|
| 105 |
-
minimum=128,
|
| 106 |
-
maximum=1280,
|
| 107 |
-
step=32,
|
| 108 |
-
value=768,
|
| 109 |
-
label=
|
| 110 |
)
|
| 111 |
|
| 112 |
-
text2image_predict = gr.Button(value=
|
| 113 |
-
|
| 114 |
with gr.Column():
|
| 115 |
-
output_image = gr.Image(label=
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
text2image_predict.click(
|
| 119 |
fn=stable_diffusion_text2img,
|
| 120 |
inputs=[
|
|
@@ -126,5 +142,5 @@ def stable_diffusion_text2img_app():
|
|
| 126 |
text2image_height,
|
| 127 |
text2image_width,
|
| 128 |
],
|
| 129 |
-
outputs=output_image
|
| 130 |
)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
| 4 |
|
| 5 |
stable_model_list = [
|
| 6 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
| 10 |
"andite/anything-v4.0",
|
| 11 |
"Lykon/DreamShaper",
|
| 12 |
"nitrosocke/Nitro-Diffusion",
|
| 13 |
+
"dreamlike-art/dreamlike-diffusion-1.0",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
| 17 |
+
|
| 18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def stable_diffusion_text2img(
|
| 22 |
+
model_path: str,
|
| 23 |
+
prompt: str,
|
| 24 |
+
negative_prompt: str,
|
| 25 |
+
guidance_scale: int,
|
| 26 |
+
num_inference_step: int,
|
| 27 |
+
height: int,
|
| 28 |
+
width: int,
|
| 29 |
+
):
|
| 30 |
|
| 31 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 32 |
+
model_path, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
|
|
|
| 33 |
).to("cuda")
|
| 34 |
|
| 35 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 46 |
|
| 47 |
return images[0]
|
| 48 |
|
| 49 |
+
|
| 50 |
def stable_diffusion_text2img_app():
|
| 51 |
with gr.Blocks():
|
| 52 |
with gr.Row():
|
| 53 |
with gr.Column():
|
| 54 |
text2image_model_path = gr.Dropdown(
|
| 55 |
+
choices=stable_model_list,
|
| 56 |
+
value=stable_model_list[0],
|
| 57 |
+
label="Text-Image Model Id",
|
| 58 |
)
|
| 59 |
|
| 60 |
text2image_prompt = gr.Textbox(
|
| 61 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
text2image_negative_prompt = gr.Textbox(
|
| 65 |
+
lines=1,
|
| 66 |
+
value=stable_negative_prompt_list[0],
|
| 67 |
+
label="Negative Prompt",
|
| 68 |
)
|
| 69 |
|
| 70 |
with gr.Accordion("Advanced Options", open=False):
|
| 71 |
text2image_guidance_scale = gr.Slider(
|
| 72 |
+
minimum=0.1,
|
| 73 |
+
maximum=15,
|
| 74 |
+
step=0.1,
|
| 75 |
+
value=7.5,
|
| 76 |
+
label="Guidance Scale",
|
| 77 |
)
|
| 78 |
|
| 79 |
text2image_num_inference_step = gr.Slider(
|
| 80 |
+
minimum=1,
|
| 81 |
+
maximum=100,
|
| 82 |
+
step=1,
|
| 83 |
+
value=50,
|
| 84 |
+
label="Num Inference Step",
|
| 85 |
)
|
| 86 |
|
| 87 |
text2image_height = gr.Slider(
|
| 88 |
+
minimum=128,
|
| 89 |
+
maximum=1280,
|
| 90 |
+
step=32,
|
| 91 |
+
value=512,
|
| 92 |
+
label="Image Height",
|
| 93 |
)
|
| 94 |
|
| 95 |
text2image_width = gr.Slider(
|
| 96 |
+
minimum=128,
|
| 97 |
+
maximum=1280,
|
| 98 |
+
step=32,
|
| 99 |
+
value=768,
|
| 100 |
+
label="Image Width",
|
| 101 |
)
|
| 102 |
|
| 103 |
+
text2image_predict = gr.Button(value="Generator")
|
| 104 |
+
|
| 105 |
with gr.Column():
|
| 106 |
+
output_image = gr.Image(label="Output")
|
| 107 |
+
|
| 108 |
+
gr.Examples(
|
| 109 |
+
examples=[
|
| 110 |
+
[
|
| 111 |
+
stable_model_list[0],
|
| 112 |
+
stable_prompt_list[0],
|
| 113 |
+
stable_negative_prompt_list[0],
|
| 114 |
+
7.5,
|
| 115 |
+
50,
|
| 116 |
+
512,
|
| 117 |
+
768,
|
| 118 |
+
]
|
| 119 |
+
],
|
| 120 |
+
inputs=[
|
| 121 |
+
text2image_model_path,
|
| 122 |
+
text2image_prompt,
|
| 123 |
+
text2image_negative_prompt,
|
| 124 |
+
text2image_guidance_scale,
|
| 125 |
+
text2image_num_inference_step,
|
| 126 |
+
text2image_height,
|
| 127 |
+
text2image_width,
|
| 128 |
+
],
|
| 129 |
+
outputs=[output_image],
|
| 130 |
+
cache_examples=False,
|
| 131 |
+
fn=stable_diffusion_text2img,
|
| 132 |
+
label="Text2Image Example",
|
| 133 |
+
)
|
| 134 |
text2image_predict.click(
|
| 135 |
fn=stable_diffusion_text2img,
|
| 136 |
inputs=[
|
|
|
|
| 142 |
text2image_height,
|
| 143 |
text2image_width,
|
| 144 |
],
|
| 145 |
+
outputs=output_image,
|
| 146 |
)
|
pyproject.toml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.black]
|
| 2 |
+
line-length = 80
|
| 3 |
+
|
| 4 |
+
[tool.isort]
|
| 5 |
+
line_length = 80
|
| 6 |
+
profile = "black"
|
script/code_formatter.sh
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
black . --config pyproject.toml
|
| 2 |
+
isort .
|