Spaces:
Paused
Paused
Delete controlnet
Browse files- controlnet/controlnet_canny.py +0 -66
- controlnet/controlnet_depth.py +0 -59
- controlnet/controlnet_hed.py +0 -54
- controlnet/controlnet_mlsd.py +0 -54
- controlnet/controlnet_pose.py +0 -55
- controlnet/controlnet_scribble.py +0 -54
- controlnet/controlnet_seg.py +0 -113
controlnet/controlnet_canny.py
DELETED
|
@@ -1,66 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
-
import cv2
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def controlnet_canny(
|
| 11 |
-
image_path:str,
|
| 12 |
-
low_th:int,
|
| 13 |
-
high_th:int,
|
| 14 |
-
):
|
| 15 |
-
image = Image.open(image_path)
|
| 16 |
-
image = np.array(image)
|
| 17 |
-
|
| 18 |
-
image = cv2.Canny(image, low_th, high_th)
|
| 19 |
-
image = image[:, :, None]
|
| 20 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 21 |
-
image = Image.fromarray(image)
|
| 22 |
-
|
| 23 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 24 |
-
"lllyasviel/sd-controlnet-canny",
|
| 25 |
-
torch_dtype=torch.float16
|
| 26 |
-
)
|
| 27 |
-
return controlnet, image
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def stable_diffusion_controlnet_canny(
|
| 31 |
-
stable_model_path:str,
|
| 32 |
-
image_path:str,
|
| 33 |
-
prompt:str,
|
| 34 |
-
negative_prompt:str,
|
| 35 |
-
num_samples:int,
|
| 36 |
-
guidance_scale:int,
|
| 37 |
-
num_inference_step:int,
|
| 38 |
-
low_th:int,
|
| 39 |
-
high_th:int
|
| 40 |
-
):
|
| 41 |
-
|
| 42 |
-
controlnet, image = controlnet_canny(
|
| 43 |
-
image_path=image_path,
|
| 44 |
-
low_th=low_th,
|
| 45 |
-
high_th=high_th
|
| 46 |
-
)
|
| 47 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 48 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 49 |
-
controlnet=controlnet,
|
| 50 |
-
safety_checker=None,
|
| 51 |
-
torch_dtype=torch.float16,
|
| 52 |
-
)
|
| 53 |
-
pipe.to("cuda")
|
| 54 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 55 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 56 |
-
|
| 57 |
-
output = pipe(
|
| 58 |
-
prompt = prompt,
|
| 59 |
-
image = image,
|
| 60 |
-
negative_prompt = negative_prompt,
|
| 61 |
-
num_images_per_prompt = num_samples,
|
| 62 |
-
num_inference_steps = num_inference_step,
|
| 63 |
-
guidance_scale = guidance_scale,
|
| 64 |
-
).images
|
| 65 |
-
|
| 66 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_depth.py
DELETED
|
@@ -1,59 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler,
|
| 3 |
-
DDIMScheduler)
|
| 4 |
-
|
| 5 |
-
from transformers import pipeline
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import numpy as np
|
| 8 |
-
import torch
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def controlnet_depth(image_path:str):
|
| 12 |
-
depth_estimator = pipeline('depth-estimation')
|
| 13 |
-
|
| 14 |
-
image = Image.open(image_path)
|
| 15 |
-
image = depth_estimator(image)['depth']
|
| 16 |
-
image = np.array(image)
|
| 17 |
-
image = image[:, :, None]
|
| 18 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 19 |
-
image = Image.fromarray(image)
|
| 20 |
-
|
| 21 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 22 |
-
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
return controlnet, image
|
| 26 |
-
|
| 27 |
-
def stable_diffusion_controlnet_depth(
|
| 28 |
-
stable_model_path:str,
|
| 29 |
-
image_path:str,
|
| 30 |
-
prompt:str,
|
| 31 |
-
negative_prompt:str,
|
| 32 |
-
num_samples:int,
|
| 33 |
-
guidance_scale:int,
|
| 34 |
-
num_inference_step:int,
|
| 35 |
-
):
|
| 36 |
-
|
| 37 |
-
controlnet, image = controlnet_depth(image_path=image_path)
|
| 38 |
-
|
| 39 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 40 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 41 |
-
controlnet=controlnet,
|
| 42 |
-
safety_checker=None,
|
| 43 |
-
torch_dtype=torch.float16
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
pipe.to("cuda")
|
| 47 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 48 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 49 |
-
|
| 50 |
-
output = pipe(
|
| 51 |
-
prompt = prompt,
|
| 52 |
-
image = image,
|
| 53 |
-
negative_prompt = negative_prompt,
|
| 54 |
-
num_images_per_prompt = num_samples,
|
| 55 |
-
num_inference_steps = num_inference_step,
|
| 56 |
-
guidance_scale = guidance_scale,
|
| 57 |
-
).images
|
| 58 |
-
|
| 59 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_hed.py
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import HEDdetector
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import torch
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def controlnet_hed(image_path:str):
|
| 10 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 11 |
-
|
| 12 |
-
image = Image.open(image_path)
|
| 13 |
-
image = hed(image)
|
| 14 |
-
|
| 15 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 16 |
-
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
| 17 |
-
torch_dtype=torch.float16
|
| 18 |
-
)
|
| 19 |
-
return controlnet, image
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def stable_diffusion_controlnet_hed(
|
| 23 |
-
stable_model_path:str,
|
| 24 |
-
image_path:str,
|
| 25 |
-
prompt:str,
|
| 26 |
-
negative_prompt:str,
|
| 27 |
-
num_samples:int,
|
| 28 |
-
guidance_scale:int,
|
| 29 |
-
num_inference_step:int,
|
| 30 |
-
):
|
| 31 |
-
|
| 32 |
-
controlnet, image = controlnet_hed(image_path=image_path)
|
| 33 |
-
|
| 34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 35 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 36 |
-
controlnet=controlnet,
|
| 37 |
-
safety_checker=None,
|
| 38 |
-
torch_dtype=torch.float16
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
pipe.to("cuda")
|
| 42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 44 |
-
|
| 45 |
-
output = pipe(
|
| 46 |
-
prompt = prompt,
|
| 47 |
-
image = image,
|
| 48 |
-
negative_prompt = negative_prompt,
|
| 49 |
-
num_images_per_prompt = num_samples,
|
| 50 |
-
num_inference_steps = num_inference_step,
|
| 51 |
-
guidance_scale = guidance_scale,
|
| 52 |
-
).images
|
| 53 |
-
|
| 54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_mlsd.py
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import MLSDdetector
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import torch
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def controlnet_mlsd(image_path:str):
|
| 10 |
-
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 11 |
-
|
| 12 |
-
image = Image.open(image_path)
|
| 13 |
-
image = mlsd(image)
|
| 14 |
-
|
| 15 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 16 |
-
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
| 17 |
-
torch_dtype=torch.float16
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
return controlnet, image
|
| 21 |
-
|
| 22 |
-
def stable_diffusion_controlnet_mlsd(
|
| 23 |
-
stable_model_path:str,
|
| 24 |
-
image_path:str,
|
| 25 |
-
prompt:str,
|
| 26 |
-
negative_prompt:str,
|
| 27 |
-
num_samples:int,
|
| 28 |
-
guidance_scale:int,
|
| 29 |
-
num_inference_step:int,
|
| 30 |
-
):
|
| 31 |
-
|
| 32 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 33 |
-
|
| 34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 35 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 36 |
-
controlnet=controlnet,
|
| 37 |
-
safety_checker=None,
|
| 38 |
-
torch_dtype=torch.float16
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
pipe.to("cuda")
|
| 42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 44 |
-
|
| 45 |
-
output = pipe(
|
| 46 |
-
prompt = prompt,
|
| 47 |
-
image = image,
|
| 48 |
-
negative_prompt = negative_prompt,
|
| 49 |
-
num_images_per_prompt = num_samples,
|
| 50 |
-
num_inference_steps = num_inference_step,
|
| 51 |
-
guidance_scale = guidance_scale,
|
| 52 |
-
).images
|
| 53 |
-
|
| 54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_pose.py
DELETED
|
@@ -1,55 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import OpenposeDetector
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def controlnet_pose(image_path:str):
|
| 11 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
| 12 |
-
|
| 13 |
-
image = Image.open(image_path)
|
| 14 |
-
image = openpose(image)
|
| 15 |
-
|
| 16 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 17 |
-
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
| 18 |
-
torch_dtype=torch.float16
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
return controlnet, image
|
| 22 |
-
|
| 23 |
-
def stable_diffusion_controlnet_pose(
|
| 24 |
-
stable_model_path:str,
|
| 25 |
-
image_path:str,
|
| 26 |
-
prompt:str,
|
| 27 |
-
negative_prompt:str,
|
| 28 |
-
num_samples:int,
|
| 29 |
-
guidance_scale:int,
|
| 30 |
-
num_inference_step:int,
|
| 31 |
-
):
|
| 32 |
-
|
| 33 |
-
controlnet, image = controlnet_pose(image_path=image_path)
|
| 34 |
-
|
| 35 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 36 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 37 |
-
controlnet=controlnet,
|
| 38 |
-
safety_checker=None,
|
| 39 |
-
torch_dtype=torch.float16
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
pipe.to("cuda")
|
| 43 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 44 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 45 |
-
|
| 46 |
-
output = pipe(
|
| 47 |
-
prompt = prompt,
|
| 48 |
-
image = image,
|
| 49 |
-
negative_prompt = negative_prompt,
|
| 50 |
-
num_images_per_prompt = num_samples,
|
| 51 |
-
num_inference_steps = num_inference_step,
|
| 52 |
-
guidance_scale = guidance_scale,
|
| 53 |
-
).images
|
| 54 |
-
|
| 55 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_scribble.py
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
| 2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 3 |
-
|
| 4 |
-
from controlnet_aux import HEDdetector
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def controlnet_scribble(image_path:str):
|
| 11 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 12 |
-
|
| 13 |
-
image = Image.open(image_path)
|
| 14 |
-
image = hed(image, scribble=True)
|
| 15 |
-
|
| 16 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 17 |
-
"fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
return controlnet, image
|
| 21 |
-
|
| 22 |
-
def stable_diffusion_controlnet_scribble(
|
| 23 |
-
stable_model_path:str,
|
| 24 |
-
image_path:str,
|
| 25 |
-
prompt:str,
|
| 26 |
-
negative_prompt:str,
|
| 27 |
-
num_samples:int,
|
| 28 |
-
guidance_scale:int,
|
| 29 |
-
num_inference_step:int,
|
| 30 |
-
):
|
| 31 |
-
|
| 32 |
-
controlnet, image = controlnet_scribble(image_path=image_path)
|
| 33 |
-
|
| 34 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 35 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 36 |
-
controlnet=controlnet,
|
| 37 |
-
safety_checker=None,
|
| 38 |
-
torch_dtype=torch.float16
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
pipe.to("cuda")
|
| 42 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 43 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 44 |
-
|
| 45 |
-
output = pipe(
|
| 46 |
-
prompt = prompt,
|
| 47 |
-
image = image,
|
| 48 |
-
negative_prompt = negative_prompt,
|
| 49 |
-
num_images_per_prompt = num_samples,
|
| 50 |
-
num_inference_steps = num_inference_step,
|
| 51 |
-
guidance_scale = guidance_scale,
|
| 52 |
-
).images
|
| 53 |
-
|
| 54 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet/controlnet_seg.py
DELETED
|
@@ -1,113 +0,0 @@
|
|
| 1 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 2 |
-
import torch
|
| 3 |
-
from diffusers import (StableDiffusionControlNetPipeline,
|
| 4 |
-
ControlNetModel, UniPCMultistepScheduler)
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import numpy as np
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def ade_palette():
|
| 13 |
-
"""ADE20K palette that maps each class to RGB values."""
|
| 14 |
-
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 15 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 16 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 17 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 18 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 19 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 20 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 21 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 22 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 23 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 24 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 25 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 26 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 27 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 28 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 29 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 30 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 31 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 32 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 33 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 34 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 35 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 36 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 37 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 38 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 39 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 40 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 41 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 42 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 43 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 44 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 45 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 46 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 47 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 48 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 49 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 50 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 51 |
-
[102, 255, 0], [92, 0, 255]]
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def controlnet_mlsd(image_path:str):
|
| 55 |
-
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 56 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 57 |
-
|
| 58 |
-
image = Image.open(image_path).convert('RGB')
|
| 59 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 60 |
-
|
| 61 |
-
with torch.no_grad():
|
| 62 |
-
outputs = image_segmentor(pixel_values)
|
| 63 |
-
|
| 64 |
-
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 65 |
-
|
| 66 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 67 |
-
palette = np.array(ade_palette())
|
| 68 |
-
|
| 69 |
-
for label, color in enumerate(palette):
|
| 70 |
-
color_seg[seg == label, :] = color
|
| 71 |
-
|
| 72 |
-
color_seg = color_seg.astype(np.uint8)
|
| 73 |
-
image = Image.fromarray(color_seg)
|
| 74 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 75 |
-
"fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
return controlnet, image
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def stable_diffusion_controlnet_seg(
|
| 82 |
-
stable_model_path:str,
|
| 83 |
-
image_path:str,
|
| 84 |
-
prompt:str,
|
| 85 |
-
negative_prompt:str,
|
| 86 |
-
num_samples:int,
|
| 87 |
-
guidance_scale:int,
|
| 88 |
-
num_inference_step:int,
|
| 89 |
-
):
|
| 90 |
-
|
| 91 |
-
controlnet, image = controlnet_mlsd(image_path=image_path)
|
| 92 |
-
|
| 93 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 94 |
-
pretrained_model_name_or_path=stable_model_path,
|
| 95 |
-
controlnet=controlnet,
|
| 96 |
-
safety_checker=None,
|
| 97 |
-
torch_dtype=torch.float16
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
pipe.to("cuda")
|
| 101 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 102 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 103 |
-
|
| 104 |
-
output = pipe(
|
| 105 |
-
prompt = prompt,
|
| 106 |
-
image = image,
|
| 107 |
-
negative_prompt = negative_prompt,
|
| 108 |
-
num_images_per_prompt = num_samples,
|
| 109 |
-
num_inference_steps = num_inference_step,
|
| 110 |
-
guidance_scale = guidance_scale,
|
| 111 |
-
).images
|
| 112 |
-
|
| 113 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|