Spaces:
Paused
Paused
Update diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/pipeline_stable_diffusion_controlnet_inpaint.py
Browse files
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/pipeline_stable_diffusion_controlnet_inpaint.py
CHANGED
|
@@ -12,13 +12,11 @@
|
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
|
| 15 |
-
|
| 16 |
-
import numpy as np
|
| 17 |
-
import PIL.Image
|
| 18 |
import torch
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
EXAMPLE_DOC_STRING = """
|
| 24 |
Examples:
|
|
@@ -98,15 +96,11 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 98 |
"""
|
| 99 |
if isinstance(image, torch.Tensor):
|
| 100 |
if not isinstance(mask, torch.Tensor):
|
| 101 |
-
raise TypeError(
|
| 102 |
-
f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not"
|
| 103 |
-
)
|
| 104 |
|
| 105 |
# Batch single image
|
| 106 |
if image.ndim == 3:
|
| 107 |
-
assert (
|
| 108 |
-
image.shape[0] == 3
|
| 109 |
-
), "Image outside a batch should be of shape (3, H, W)"
|
| 110 |
image = image.unsqueeze(0)
|
| 111 |
|
| 112 |
# Batch and add channel dim for single mask
|
|
@@ -123,15 +117,9 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 123 |
else:
|
| 124 |
mask = mask.unsqueeze(1)
|
| 125 |
|
| 126 |
-
assert
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
assert (
|
| 130 |
-
image.shape[-2:] == mask.shape[-2:]
|
| 131 |
-
), "Image and Mask must have the same spatial dimensions"
|
| 132 |
-
assert (
|
| 133 |
-
image.shape[0] == mask.shape[0]
|
| 134 |
-
), "Image and Mask must have the same batch size"
|
| 135 |
|
| 136 |
# Check image is in [-1, 1]
|
| 137 |
if image.min() < -1 or image.max() > 1:
|
|
@@ -148,9 +136,7 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 148 |
# Image as float32
|
| 149 |
image = image.to(dtype=torch.float32)
|
| 150 |
elif isinstance(mask, torch.Tensor):
|
| 151 |
-
raise TypeError(
|
| 152 |
-
f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not"
|
| 153 |
-
)
|
| 154 |
else:
|
| 155 |
# preprocess image
|
| 156 |
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
@@ -170,9 +156,7 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 170 |
mask = [mask]
|
| 171 |
|
| 172 |
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
| 173 |
-
mask = np.concatenate(
|
| 174 |
-
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
|
| 175 |
-
)
|
| 176 |
mask = mask.astype(np.float32) / 255.0
|
| 177 |
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 178 |
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
|
@@ -185,10 +169,7 @@ def prepare_mask_and_masked_image(image, mask):
|
|
| 185 |
|
| 186 |
return mask, masked_image
|
| 187 |
|
| 188 |
-
|
| 189 |
-
class StableDiffusionControlNetInpaintPipeline(
|
| 190 |
-
StableDiffusionControlNetPipeline
|
| 191 |
-
):
|
| 192 |
r"""
|
| 193 |
Pipeline for text-guided image inpainting using Stable Diffusion with ControlNet guidance.
|
| 194 |
|
|
@@ -217,28 +198,15 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 217 |
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 218 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 219 |
"""
|
| 220 |
-
|
| 221 |
def prepare_mask_latents(
|
| 222 |
-
self,
|
| 223 |
-
mask,
|
| 224 |
-
masked_image,
|
| 225 |
-
batch_size,
|
| 226 |
-
height,
|
| 227 |
-
width,
|
| 228 |
-
dtype,
|
| 229 |
-
device,
|
| 230 |
-
generator,
|
| 231 |
-
do_classifier_free_guidance,
|
| 232 |
):
|
| 233 |
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 234 |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 235 |
# and half precision
|
| 236 |
mask = torch.nn.functional.interpolate(
|
| 237 |
-
mask,
|
| 238 |
-
size=(
|
| 239 |
-
height // self.vae_scale_factor,
|
| 240 |
-
width // self.vae_scale_factor,
|
| 241 |
-
),
|
| 242 |
)
|
| 243 |
mask = mask.to(device=device, dtype=dtype)
|
| 244 |
|
|
@@ -247,19 +215,13 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 247 |
# encode the mask image into latents space so we can concatenate it to the latents
|
| 248 |
if isinstance(generator, list):
|
| 249 |
masked_image_latents = [
|
| 250 |
-
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(
|
| 251 |
-
generator=generator[i]
|
| 252 |
-
)
|
| 253 |
for i in range(batch_size)
|
| 254 |
]
|
| 255 |
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
| 256 |
else:
|
| 257 |
-
masked_image_latents = self.vae.encode(
|
| 258 |
-
|
| 259 |
-
).latent_dist.sample(generator=generator)
|
| 260 |
-
masked_image_latents = (
|
| 261 |
-
self.vae.config.scaling_factor * masked_image_latents
|
| 262 |
-
)
|
| 263 |
|
| 264 |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 265 |
if mask.shape[0] < batch_size:
|
|
@@ -277,35 +239,24 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 277 |
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 278 |
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 279 |
)
|
| 280 |
-
masked_image_latents = masked_image_latents.repeat(
|
| 281 |
-
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
| 282 |
-
)
|
| 283 |
|
| 284 |
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
| 285 |
masked_image_latents = (
|
| 286 |
-
torch.cat([masked_image_latents] * 2)
|
| 287 |
-
if do_classifier_free_guidance
|
| 288 |
-
else masked_image_latents
|
| 289 |
)
|
| 290 |
|
| 291 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 292 |
-
masked_image_latents = masked_image_latents.to(
|
| 293 |
-
device=device, dtype=dtype
|
| 294 |
-
)
|
| 295 |
return mask, masked_image_latents
|
| 296 |
-
|
| 297 |
@torch.no_grad()
|
| 298 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 299 |
def __call__(
|
| 300 |
self,
|
| 301 |
-
prompt: Union[str, List[str]] = None,
|
| 302 |
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 303 |
-
control_image: Union[
|
| 304 |
-
torch.FloatTensor,
|
| 305 |
-
PIL.Image.Image,
|
| 306 |
-
List[torch.FloatTensor],
|
| 307 |
-
List[PIL.Image.Image],
|
| 308 |
-
] = None,
|
| 309 |
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 310 |
height: Optional[int] = None,
|
| 311 |
width: Optional[int] = None,
|
|
@@ -314,17 +265,13 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 314 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 315 |
num_images_per_prompt: Optional[int] = 1,
|
| 316 |
eta: float = 0.0,
|
| 317 |
-
generator: Optional[
|
| 318 |
-
Union[torch.Generator, List[torch.Generator]]
|
| 319 |
-
] = None,
|
| 320 |
latents: Optional[torch.FloatTensor] = None,
|
| 321 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 322 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 323 |
output_type: Optional[str] = "pil",
|
| 324 |
return_dict: bool = True,
|
| 325 |
-
callback: Optional[
|
| 326 |
-
Callable[[int, int, torch.FloatTensor], None]
|
| 327 |
-
] = None,
|
| 328 |
callback_steps: int = 1,
|
| 329 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 330 |
controlnet_conditioning_scale: float = 1.0,
|
|
@@ -346,7 +293,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 346 |
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 347 |
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
| 348 |
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
| 349 |
-
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 350 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 351 |
The height in pixels of the generated image.
|
| 352 |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
@@ -415,14 +362,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 415 |
|
| 416 |
# 1. Check inputs. Raise error if not correct
|
| 417 |
self.check_inputs(
|
| 418 |
-
prompt,
|
| 419 |
-
control_image,
|
| 420 |
-
height,
|
| 421 |
-
width,
|
| 422 |
-
callback_steps,
|
| 423 |
-
negative_prompt,
|
| 424 |
-
prompt_embeds,
|
| 425 |
-
negative_prompt_embeds,
|
| 426 |
)
|
| 427 |
|
| 428 |
# 2. Define call parameters
|
|
@@ -452,15 +392,15 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 452 |
|
| 453 |
# 4. Prepare image
|
| 454 |
control_image = self.prepare_image(
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
if do_classifier_free_guidance:
|
| 465 |
control_image = torch.cat([control_image] * 2)
|
| 466 |
|
|
@@ -469,7 +409,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 469 |
timesteps = self.scheduler.timesteps
|
| 470 |
|
| 471 |
# 6. Prepare latent variables
|
| 472 |
-
num_channels_latents = self.controlnet.in_channels
|
| 473 |
latents = self.prepare_latents(
|
| 474 |
batch_size * num_images_per_prompt,
|
| 475 |
num_channels_latents,
|
|
@@ -480,7 +420,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 480 |
generator,
|
| 481 |
latents,
|
| 482 |
)
|
| 483 |
-
|
| 484 |
# EXTRA: prepare mask latents
|
| 485 |
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
|
| 486 |
mask, masked_image_latents = self.prepare_mask_latents(
|
|
@@ -499,20 +439,12 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 499 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 500 |
|
| 501 |
# 8. Denoising loop
|
| 502 |
-
num_warmup_steps = (
|
| 503 |
-
len(timesteps) - num_inference_steps * self.scheduler.order
|
| 504 |
-
)
|
| 505 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 506 |
for i, t in enumerate(timesteps):
|
| 507 |
# expand the latents if we are doing classifier free guidance
|
| 508 |
-
latent_model_input = (
|
| 509 |
-
|
| 510 |
-
if do_classifier_free_guidance
|
| 511 |
-
else latents
|
| 512 |
-
)
|
| 513 |
-
latent_model_input = self.scheduler.scale_model_input(
|
| 514 |
-
latent_model_input, t
|
| 515 |
-
)
|
| 516 |
|
| 517 |
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 518 |
latent_model_input,
|
|
@@ -529,9 +461,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 529 |
mid_block_res_sample *= controlnet_conditioning_scale
|
| 530 |
|
| 531 |
# predict the noise residual
|
| 532 |
-
latent_model_input = torch.cat(
|
| 533 |
-
[latent_model_input, mask, masked_image_latents], dim=1
|
| 534 |
-
)
|
| 535 |
noise_pred = self.unet(
|
| 536 |
latent_model_input,
|
| 537 |
t,
|
|
@@ -544,30 +474,20 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 544 |
# perform guidance
|
| 545 |
if do_classifier_free_guidance:
|
| 546 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 547 |
-
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 548 |
-
noise_pred_text - noise_pred_uncond
|
| 549 |
-
)
|
| 550 |
|
| 551 |
# compute the previous noisy sample x_t -> x_t-1
|
| 552 |
-
latents = self.scheduler.step(
|
| 553 |
-
noise_pred, t, latents, **extra_step_kwargs
|
| 554 |
-
).prev_sample
|
| 555 |
|
| 556 |
# call the callback, if provided
|
| 557 |
-
if i == len(timesteps) - 1 or (
|
| 558 |
-
(i + 1) > num_warmup_steps
|
| 559 |
-
and (i + 1) % self.scheduler.order == 0
|
| 560 |
-
):
|
| 561 |
progress_bar.update()
|
| 562 |
if callback is not None and i % callback_steps == 0:
|
| 563 |
callback(i, t, latents)
|
| 564 |
|
| 565 |
# If we do sequential model offloading, let's offload unet and controlnet
|
| 566 |
# manually for max memory savings
|
| 567 |
-
if (
|
| 568 |
-
hasattr(self, "final_offload_hook")
|
| 569 |
-
and self.final_offload_hook is not None
|
| 570 |
-
):
|
| 571 |
self.unet.to("cpu")
|
| 572 |
self.controlnet.to("cpu")
|
| 573 |
torch.cuda.empty_cache()
|
|
@@ -580,9 +500,7 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 580 |
image = self.decode_latents(latents)
|
| 581 |
|
| 582 |
# 9. Run safety checker
|
| 583 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 584 |
-
image, device, prompt_embeds.dtype
|
| 585 |
-
)
|
| 586 |
|
| 587 |
# 10. Convert to PIL
|
| 588 |
image = self.numpy_to_pil(image)
|
|
@@ -591,20 +509,13 @@ class StableDiffusionControlNetInpaintPipeline(
|
|
| 591 |
image = self.decode_latents(latents)
|
| 592 |
|
| 593 |
# 9. Run safety checker
|
| 594 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 595 |
-
image, device, prompt_embeds.dtype
|
| 596 |
-
)
|
| 597 |
|
| 598 |
# Offload last model to CPU
|
| 599 |
-
if (
|
| 600 |
-
hasattr(self, "final_offload_hook")
|
| 601 |
-
and self.final_offload_hook is not None
|
| 602 |
-
):
|
| 603 |
self.final_offload_hook.offload()
|
| 604 |
|
| 605 |
if not return_dict:
|
| 606 |
return (image, has_nsfw_concept)
|
| 607 |
|
| 608 |
-
return StableDiffusionPipelineOutput(
|
| 609 |
-
images=image, nsfw_content_detected=has_nsfw_concept
|
| 610 |
-
)
|
|
|
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
import torch
|
| 16 |
+
import PIL.Image
|
| 17 |
+
import numpy as np
|
| 18 |
|
| 19 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import *
|
| 20 |
|
| 21 |
EXAMPLE_DOC_STRING = """
|
| 22 |
Examples:
|
|
|
|
| 96 |
"""
|
| 97 |
if isinstance(image, torch.Tensor):
|
| 98 |
if not isinstance(mask, torch.Tensor):
|
| 99 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Batch single image
|
| 102 |
if image.ndim == 3:
|
| 103 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
|
|
|
|
|
|
| 104 |
image = image.unsqueeze(0)
|
| 105 |
|
| 106 |
# Batch and add channel dim for single mask
|
|
|
|
| 117 |
else:
|
| 118 |
mask = mask.unsqueeze(1)
|
| 119 |
|
| 120 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
| 121 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
| 122 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
# Check image is in [-1, 1]
|
| 125 |
if image.min() < -1 or image.max() > 1:
|
|
|
|
| 136 |
# Image as float32
|
| 137 |
image = image.to(dtype=torch.float32)
|
| 138 |
elif isinstance(mask, torch.Tensor):
|
| 139 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
|
|
|
|
|
|
| 140 |
else:
|
| 141 |
# preprocess image
|
| 142 |
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
|
|
| 156 |
mask = [mask]
|
| 157 |
|
| 158 |
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
| 159 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
|
|
|
|
|
|
| 160 |
mask = mask.astype(np.float32) / 255.0
|
| 161 |
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
| 162 |
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
|
|
|
| 169 |
|
| 170 |
return mask, masked_image
|
| 171 |
|
| 172 |
+
class StableDiffusionControlNetInpaintPipeline(StableDiffusionControlNetPipeline):
|
|
|
|
|
|
|
|
|
|
| 173 |
r"""
|
| 174 |
Pipeline for text-guided image inpainting using Stable Diffusion with ControlNet guidance.
|
| 175 |
|
|
|
|
| 198 |
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 199 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 200 |
"""
|
| 201 |
+
|
| 202 |
def prepare_mask_latents(
|
| 203 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
):
|
| 205 |
# resize the mask to latents shape as we concatenate the mask to the latents
|
| 206 |
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
| 207 |
# and half precision
|
| 208 |
mask = torch.nn.functional.interpolate(
|
| 209 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
)
|
| 211 |
mask = mask.to(device=device, dtype=dtype)
|
| 212 |
|
|
|
|
| 215 |
# encode the mask image into latents space so we can concatenate it to the latents
|
| 216 |
if isinstance(generator, list):
|
| 217 |
masked_image_latents = [
|
| 218 |
+
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
|
|
|
|
|
|
| 219 |
for i in range(batch_size)
|
| 220 |
]
|
| 221 |
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
| 222 |
else:
|
| 223 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
| 224 |
+
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
| 227 |
if mask.shape[0] < batch_size:
|
|
|
|
| 239 |
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
| 240 |
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
| 241 |
)
|
| 242 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
|
|
|
|
|
|
| 243 |
|
| 244 |
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
| 245 |
masked_image_latents = (
|
| 246 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
|
|
|
|
|
|
| 247 |
)
|
| 248 |
|
| 249 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 250 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
| 251 |
return mask, masked_image_latents
|
| 252 |
+
|
| 253 |
@torch.no_grad()
|
| 254 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 255 |
def __call__(
|
| 256 |
self,
|
| 257 |
+
prompt: Union[str, List[str]] = None,
|
| 258 |
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 259 |
+
control_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 261 |
height: Optional[int] = None,
|
| 262 |
width: Optional[int] = None,
|
|
|
|
| 265 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 266 |
num_images_per_prompt: Optional[int] = 1,
|
| 267 |
eta: float = 0.0,
|
| 268 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
|
|
| 269 |
latents: Optional[torch.FloatTensor] = None,
|
| 270 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 271 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 272 |
output_type: Optional[str] = "pil",
|
| 273 |
return_dict: bool = True,
|
| 274 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
|
|
|
| 275 |
callback_steps: int = 1,
|
| 276 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 277 |
controlnet_conditioning_scale: float = 1.0,
|
|
|
|
| 293 |
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 294 |
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
| 295 |
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
| 296 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 297 |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 298 |
The height in pixels of the generated image.
|
| 299 |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
| 362 |
|
| 363 |
# 1. Check inputs. Raise error if not correct
|
| 364 |
self.check_inputs(
|
| 365 |
+
prompt, control_image, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
)
|
| 367 |
|
| 368 |
# 2. Define call parameters
|
|
|
|
| 392 |
|
| 393 |
# 4. Prepare image
|
| 394 |
control_image = self.prepare_image(
|
| 395 |
+
control_image,
|
| 396 |
+
width,
|
| 397 |
+
height,
|
| 398 |
+
batch_size * num_images_per_prompt,
|
| 399 |
+
num_images_per_prompt,
|
| 400 |
+
device,
|
| 401 |
+
self.controlnet.dtype,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
if do_classifier_free_guidance:
|
| 405 |
control_image = torch.cat([control_image] * 2)
|
| 406 |
|
|
|
|
| 409 |
timesteps = self.scheduler.timesteps
|
| 410 |
|
| 411 |
# 6. Prepare latent variables
|
| 412 |
+
num_channels_latents = self.controlnet.config.in_channels
|
| 413 |
latents = self.prepare_latents(
|
| 414 |
batch_size * num_images_per_prompt,
|
| 415 |
num_channels_latents,
|
|
|
|
| 420 |
generator,
|
| 421 |
latents,
|
| 422 |
)
|
| 423 |
+
|
| 424 |
# EXTRA: prepare mask latents
|
| 425 |
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
|
| 426 |
mask, masked_image_latents = self.prepare_mask_latents(
|
|
|
|
| 439 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 440 |
|
| 441 |
# 8. Denoising loop
|
| 442 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
|
|
|
| 443 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 444 |
for i, t in enumerate(timesteps):
|
| 445 |
# expand the latents if we are doing classifier free guidance
|
| 446 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 447 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
| 449 |
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 450 |
latent_model_input,
|
|
|
|
| 461 |
mid_block_res_sample *= controlnet_conditioning_scale
|
| 462 |
|
| 463 |
# predict the noise residual
|
| 464 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
|
|
|
|
|
|
| 465 |
noise_pred = self.unet(
|
| 466 |
latent_model_input,
|
| 467 |
t,
|
|
|
|
| 474 |
# perform guidance
|
| 475 |
if do_classifier_free_guidance:
|
| 476 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 477 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
| 478 |
|
| 479 |
# compute the previous noisy sample x_t -> x_t-1
|
| 480 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
|
|
|
| 481 |
|
| 482 |
# call the callback, if provided
|
| 483 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
|
|
|
|
|
|
| 484 |
progress_bar.update()
|
| 485 |
if callback is not None and i % callback_steps == 0:
|
| 486 |
callback(i, t, latents)
|
| 487 |
|
| 488 |
# If we do sequential model offloading, let's offload unet and controlnet
|
| 489 |
# manually for max memory savings
|
| 490 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
|
|
|
|
|
|
| 491 |
self.unet.to("cpu")
|
| 492 |
self.controlnet.to("cpu")
|
| 493 |
torch.cuda.empty_cache()
|
|
|
|
| 500 |
image = self.decode_latents(latents)
|
| 501 |
|
| 502 |
# 9. Run safety checker
|
| 503 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
|
|
|
| 504 |
|
| 505 |
# 10. Convert to PIL
|
| 506 |
image = self.numpy_to_pil(image)
|
|
|
|
| 509 |
image = self.decode_latents(latents)
|
| 510 |
|
| 511 |
# 9. Run safety checker
|
| 512 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
|
|
|
| 513 |
|
| 514 |
# Offload last model to CPU
|
| 515 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
|
|
|
|
|
|
| 516 |
self.final_offload_hook.offload()
|
| 517 |
|
| 518 |
if not return_dict:
|
| 519 |
return (image, has_nsfw_concept)
|
| 520 |
|
| 521 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
|
|