Spaces:
Running
Running
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import glob | |
| import json | |
| import math | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, Optional | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.attention import BasicTransformerBlock | |
| from diffusers.models.embeddings import (PatchEmbed, PixArtAlphaTextProjection, | |
| TimestepEmbedding, Timesteps, | |
| get_2d_sincos_pos_embed) | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous | |
| from diffusers.utils import (USE_PEFT_BACKEND, BaseOutput, is_torch_version, | |
| logging) | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from einops import rearrange | |
| from torch import nn | |
| from .attention import (EasyAnimateDiTBlock, HunyuanDiTBlock, | |
| SelfAttentionTemporalTransformerBlock, | |
| TemporalTransformerBlock, zero_module) | |
| from .embeddings import (HunyuanCombinedTimestepTextSizeStyleEmbedding, | |
| TimePositionalEncoding) | |
| from .norm import AdaLayerNormSingle, EasyAnimateRMSNorm | |
| from .patch import (CasualPatchEmbed3D, PatchEmbed3D, PatchEmbedF3D, | |
| TemporalUpsampler3D, UnPatch1D) | |
| from .resampler import Resampler | |
| try: | |
| from diffusers.models.embeddings import PixArtAlphaTextProjection | |
| except: | |
| from diffusers.models.embeddings import \ | |
| CaptionProjection as PixArtAlphaTextProjection | |
| class CLIPProjection(nn.Module): | |
| """ | |
| Projects caption embeddings. Also handles dropout for classifier-free guidance. | |
| Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
| """ | |
| def __init__(self, in_features, hidden_size, num_tokens=120): | |
| super().__init__() | |
| self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) | |
| self.act_1 = nn.GELU(approximate="tanh") | |
| self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True) | |
| self.linear_2 = zero_module(self.linear_2) | |
| def forward(self, caption): | |
| hidden_states = self.linear_1(caption) | |
| hidden_states = self.act_1(hidden_states) | |
| hidden_states = self.linear_2(hidden_states) | |
| return hidden_states | |
| class Transformer3DModelOutput(BaseOutput): | |
| """ | |
| The output of [`Transformer2DModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: torch.FloatTensor | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| """ | |
| A 3D Transformer model for image-like data. | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
| This is fixed during training since it is used to learn a number of position embeddings. | |
| num_vector_embeds (`int`, *optional*): | |
| The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
| Includes the class for the masked latent pixel. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
| num_embeds_ada_norm ( `int`, *optional*): | |
| The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
| `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
| added to the hidden states. | |
| During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
| attention_bias (`bool`, *optional*): | |
| Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| sample_size: Optional[int] = None, | |
| num_vector_embeds: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_type: str = "layer_norm", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| attention_type: str = "default", | |
| caption_channels: int = None, | |
| n_query=8, | |
| # block type | |
| basic_block_type: str = "motionmodule", | |
| # enable_uvit | |
| enable_uvit: bool = False, | |
| # 3d patch params | |
| patch_3d: bool = False, | |
| fake_3d: bool = False, | |
| time_patch_size: Optional[int] = None, | |
| casual_3d: bool = False, | |
| casual_3d_upsampler_index: Optional[list] = None, | |
| # motion module kwargs | |
| motion_module_type = "VanillaGrid", | |
| motion_module_kwargs = None, | |
| motion_module_kwargs_odd = None, | |
| motion_module_kwargs_even = None, | |
| # time position encoding | |
| time_position_encoding_before_transformer = False, | |
| qk_norm = False, | |
| after_norm = False, | |
| resize_inpaint_mask_directly: bool = False, | |
| enable_clip_in_inpaint: bool = True, | |
| position_of_clip_embedding: str = "head", | |
| enable_zero_in_inpaint: bool = False, | |
| enable_text_attention_mask: bool = True, | |
| add_noise_in_inpaint_model: bool = False, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| self.enable_uvit = enable_uvit | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.basic_block_type = basic_block_type | |
| self.patch_3d = patch_3d | |
| self.fake_3d = fake_3d | |
| self.casual_3d = casual_3d | |
| self.casual_3d_upsampler_index = casual_3d_upsampler_index | |
| assert sample_size is not None, "Transformer3DModel over patched input must provide sample_size" | |
| self.height = sample_size | |
| self.width = sample_size | |
| self.patch_size = patch_size | |
| self.time_patch_size = self.patch_size if time_patch_size is None else time_patch_size | |
| interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1 | |
| interpolation_scale = max(interpolation_scale, 1) | |
| self.n_query = n_query | |
| if self.casual_3d: | |
| self.pos_embed = CasualPatchEmbed3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| time_patch_size=self.time_patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| elif self.patch_3d: | |
| if self.fake_3d: | |
| self.pos_embed = PatchEmbedF3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| else: | |
| self.pos_embed = PatchEmbed3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| time_patch_size=self.time_patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| else: | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| # 3. Define transformers blocks | |
| if self.basic_block_type == "motionmodule": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| qk_norm=qk_norm, | |
| after_norm=after_norm, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| elif self.basic_block_type == "global_motionmodule": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs_even if d % 2 == 0 else motion_module_kwargs_odd, | |
| qk_norm=qk_norm, | |
| after_norm=after_norm, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| elif self.basic_block_type == "selfattentiontemporal": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| SelfAttentionTemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| qk_norm=qk_norm, | |
| after_norm=after_norm, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| else: | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| if self.casual_3d: | |
| self.unpatch1d = TemporalUpsampler3D() | |
| elif self.patch_3d and self.fake_3d: | |
| self.unpatch1d = UnPatch1D(inner_dim, True) | |
| if self.enable_uvit: | |
| self.long_connect_fc = nn.ModuleList( | |
| [ | |
| nn.Linear(inner_dim, inner_dim, True) for d in range(13) | |
| ] | |
| ) | |
| for index in range(13): | |
| self.long_connect_fc[index] = zero_module(self.long_connect_fc[index]) | |
| # 4. Define output layers | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| if norm_type != "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
| if self.patch_3d and not self.fake_3d: | |
| self.proj_out_2 = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
| else: | |
| self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
| elif norm_type == "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
| if self.patch_3d and not self.fake_3d: | |
| self.proj_out = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
| else: | |
| self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
| # 5. PixArt-Alpha blocks. | |
| self.adaln_single = None | |
| self.use_additional_conditions = False | |
| if norm_type == "ada_norm_single": | |
| self.use_additional_conditions = self.config.sample_size == 128 | |
| # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
| # additional conditions until we find better name | |
| self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
| self.caption_projection = None | |
| self.clip_projection = None | |
| if caption_channels is not None: | |
| self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
| if in_channels == 12: | |
| self.clip_projection = CLIPProjection(in_features=768, hidden_size=inner_dim * 8) | |
| self.gradient_checkpointing = False | |
| self.time_position_encoding_before_transformer = time_position_encoding_before_transformer | |
| if self.time_position_encoding_before_transformer: | |
| self.t_pos = TimePositionalEncoding(max_len = 4096, d_model = inner_dim) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: Optional[torch.LongTensor] = None, | |
| timestep_cond = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| text_embedding_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states_t5: Optional[torch.Tensor] = None, | |
| text_embedding_mask_t5: Optional[torch.Tensor] = None, | |
| image_meta_size = None, | |
| style = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| inpaint_latents: torch.Tensor = None, | |
| control_latents: torch.Tensor = None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
| clip_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input `hidden_states`. | |
| encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| attention_mask ( `torch.Tensor`, *optional*): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| text_embedding_mask ( `torch.Tensor`, *optional*): | |
| Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
| * Mask `(batch, sequence_length)` True = keep, False = discard. | |
| * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
| If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
| above. This bias will be added to the cross-attention scores. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer3DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| text_embedding_mask = text_embedding_mask.squeeze(1) | |
| if clip_attention_mask is not None: | |
| text_embedding_mask = torch.cat([text_embedding_mask, clip_attention_mask], dim=1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if text_embedding_mask is not None and text_embedding_mask.ndim == 2: | |
| encoder_attention_mask = (1 - text_embedding_mask.to(encoder_hidden_states.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| if inpaint_latents is not None: | |
| hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
| if control_latents is not None: | |
| hidden_states = torch.concat([hidden_states, control_latents], 1) | |
| # 1. Input | |
| if self.casual_3d: | |
| video_length, height, width = (hidden_states.shape[-3] - 1) // self.time_patch_size + 1, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| elif self.patch_3d: | |
| video_length, height, width = hidden_states.shape[-3] // self.time_patch_size, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| else: | |
| video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
| hidden_states = self.pos_embed(hidden_states) | |
| if self.adaln_single is not None: | |
| if self.use_additional_conditions and added_cond_kwargs is None: | |
| raise ValueError( | |
| "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
| ) | |
| batch_size = hidden_states.shape[0] // video_length | |
| timestep, embedded_timestep = self.adaln_single( | |
| timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
| ) | |
| hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width) | |
| # hidden_states | |
| # bs, c, f, h, w => b (f h w ) c | |
| if self.time_position_encoding_before_transformer: | |
| hidden_states = self.t_pos(hidden_states) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
| # 2. Blocks | |
| if self.caption_projection is not None: | |
| batch_size = hidden_states.shape[0] | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
| if clip_encoder_hidden_states is not None and encoder_hidden_states is not None: | |
| batch_size = hidden_states.shape[0] | |
| clip_encoder_hidden_states = self.clip_projection(clip_encoder_hidden_states) | |
| clip_encoder_hidden_states = clip_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, clip_encoder_hidden_states], dim = 1) | |
| skips = [] | |
| skip_index = 0 | |
| for index, block in enumerate(self.transformer_blocks): | |
| if self.enable_uvit: | |
| if index >= 15: | |
| long_connect = self.long_connect_fc[skip_index](skips.pop()) | |
| hidden_states = hidden_states + long_connect | |
| skip_index += 1 | |
| if self.casual_3d_upsampler_index is not None and index in self.casual_3d_upsampler_index: | |
| hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width) | |
| hidden_states = self.unpatch1d(hidden_states) | |
| video_length = (video_length - 1) * 2 + 1 | |
| hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c", f=video_length, h=height, w=width) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| args = { | |
| "basic": [], | |
| "motionmodule": [video_length, height, width], | |
| "global_motionmodule": [video_length, height, width], | |
| "selfattentiontemporal": [], | |
| }[self.basic_block_type] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| cross_attention_kwargs, | |
| class_labels, | |
| *args, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| kwargs = { | |
| "basic": {}, | |
| "motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
| "global_motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
| "selfattentiontemporal": {}, | |
| }[self.basic_block_type] | |
| hidden_states = block( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| **kwargs | |
| ) | |
| if self.enable_uvit: | |
| if index < 13: | |
| skips.append(hidden_states) | |
| if self.fake_3d and self.patch_3d: | |
| hidden_states = rearrange(hidden_states, "b (f h w) c -> (b h w) c f", f=video_length, w=width, h=height) | |
| hidden_states = self.unpatch1d(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b h w) c f -> b (f h w) c", w=width, h=height) | |
| # 3. Output | |
| if self.config.norm_type != "ada_norm_single": | |
| conditioning = self.transformer_blocks[0].norm1.emb( | |
| timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
| hidden_states = self.proj_out_2(hidden_states) | |
| elif self.config.norm_type == "ada_norm_single": | |
| shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) | |
| # Modulation | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.squeeze(1) | |
| # unpatchify | |
| if self.adaln_single is None: | |
| height = width = int(hidden_states.shape[1] ** 0.5) | |
| if self.patch_3d: | |
| if self.fake_3d: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length * self.patch_size, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
| else: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length, height, width, self.time_patch_size, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwopqc->ncfohpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, video_length * self.time_patch_size, height * self.patch_size, width * self.patch_size) | |
| ) | |
| else: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, video_length, height * self.patch_size, width * self.patch_size) | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |
| def from_pretrained_2d( | |
| cls, pretrained_model_path, subfolder=None, patch_size=2, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size(): | |
| new_shape = model.state_dict()['pos_embed.proj.weight'].size() | |
| if len(new_shape) == 5: | |
| state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
| state_dict['pos_embed.proj.weight'][:, :, :-1] = 0 | |
| else: | |
| model.state_dict()['pos_embed.proj.weight'][:, :4, :, :] = state_dict['pos_embed.proj.weight'] | |
| model.state_dict()['pos_embed.proj.weight'][:, 4:, :, :] = 0 | |
| state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
| if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size(): | |
| new_shape = model.state_dict()['proj_out.weight'].size() | |
| state_dict['proj_out.weight'] = torch.tile(state_dict['proj_out.weight'], [patch_size, 1]) | |
| if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size(): | |
| new_shape = model.state_dict()['proj_out.bias'].size() | |
| state_dict['proj_out.bias'] = torch.tile(state_dict['proj_out.bias'], [patch_size]) | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| params = [p.numel() if "attn_temporal." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### Attn temporal Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model | |
| class HunyuanTransformer3DModel(ModelMixin, ConfigMixin): | |
| """ | |
| HunYuanDiT: Diffusion model with a Transformer backbone. | |
| Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): | |
| The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): | |
| The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| patch_size (`int`, *optional*): | |
| The size of the patch to use for the input. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
| Activation function to use in feed-forward. | |
| sample_size (`int`, *optional*): | |
| The width of the latent images. This is fixed during training since it is used to learn a number of | |
| position embeddings. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of dimension in the clip text embedding. | |
| hidden_size (`int`, *optional*): | |
| The size of hidden layer in the conditioning embedding layers. | |
| num_layers (`int`, *optional*, defaults to 1): | |
| The number of layers of Transformer blocks to use. | |
| mlp_ratio (`float`, *optional*, defaults to 4.0): | |
| The ratio of the hidden layer size to the input size. | |
| learn_sigma (`bool`, *optional*, defaults to `True`): | |
| Whether to predict variance. | |
| cross_attention_dim_t5 (`int`, *optional*): | |
| The number dimensions in t5 text embedding. | |
| pooled_projection_dim (`int`, *optional*): | |
| The size of the pooled projection. | |
| text_len (`int`, *optional*): | |
| The length of the clip text embedding. | |
| text_len_t5 (`int`, *optional*): | |
| The length of the T5 text embedding. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| n_query=16, | |
| projection_dim=768, | |
| activation_fn: str = "gelu-approximate", | |
| sample_size=32, | |
| hidden_size=1152, | |
| num_layers: int = 28, | |
| mlp_ratio: float = 4.0, | |
| learn_sigma: bool = True, | |
| cross_attention_dim: int = 1024, | |
| norm_type: str = "layer_norm", | |
| cross_attention_dim_t5: int = 2048, | |
| pooled_projection_dim: int = 1024, | |
| text_len: int = 77, | |
| text_len_t5: int = 256, | |
| # block type | |
| basic_block_type: str = "basic", | |
| time_position_encoding = False, | |
| time_position_encoding_type: str = "2d_rope", | |
| after_norm = False, | |
| resize_inpaint_mask_directly: bool = False, | |
| enable_clip_in_inpaint: bool = True, | |
| position_of_clip_embedding: str = "full", | |
| enable_text_attention_mask: bool = True, | |
| add_noise_in_inpaint_model: bool = False, | |
| ): | |
| super().__init__() | |
| # 4. Define output layers | |
| if learn_sigma: | |
| self.out_channels = in_channels * 2 if out_channels is None else out_channels | |
| else: | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.enable_inpaint = in_channels * 2 != self.out_channels if learn_sigma else in_channels != self.out_channels | |
| self.num_heads = num_attention_heads | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.basic_block_type = basic_block_type | |
| self.resize_inpaint_mask_directly = resize_inpaint_mask_directly | |
| self.text_embedder = PixArtAlphaTextProjection( | |
| in_features=cross_attention_dim_t5, | |
| hidden_size=cross_attention_dim_t5 * 4, | |
| out_features=cross_attention_dim, | |
| act_fn="silu_fp32", | |
| ) | |
| self.text_embedding_padding = nn.Parameter( | |
| torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) | |
| ) | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| in_channels=in_channels, | |
| embed_dim=hidden_size, | |
| patch_size=patch_size, | |
| pos_embed_type=None, | |
| ) | |
| self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( | |
| hidden_size, | |
| pooled_projection_dim=pooled_projection_dim, | |
| seq_len=text_len_t5, | |
| cross_attention_dim=cross_attention_dim_t5, | |
| ) | |
| # 3. Define transformers blocks | |
| if self.basic_block_type == "hybrid_attention": | |
| self.blocks = nn.ModuleList( | |
| [ | |
| HunyuanDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| activation_fn=activation_fn, | |
| ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
| cross_attention_dim=cross_attention_dim, | |
| qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
| skip=layer > num_layers // 2, | |
| after_norm=after_norm, | |
| time_position_encoding=time_position_encoding, | |
| is_local_attention=False if layer % 2 == 0 else True, | |
| local_attention_frames=2, | |
| enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
| ) | |
| for layer in range(num_layers) | |
| ] | |
| ) | |
| elif self.basic_block_type == "kvcompression_basic": | |
| self.blocks = nn.ModuleList( | |
| [ | |
| HunyuanDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| activation_fn=activation_fn, | |
| ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
| cross_attention_dim=cross_attention_dim, | |
| qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
| skip=layer > num_layers // 2, | |
| after_norm=after_norm, | |
| time_position_encoding=time_position_encoding, | |
| kvcompression=False if layer < num_layers // 2 else True, | |
| enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
| ) | |
| for layer in range(num_layers) | |
| ] | |
| ) | |
| else: | |
| self.blocks = nn.ModuleList( | |
| [ | |
| HunyuanDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| activation_fn=activation_fn, | |
| ff_inner_dim=int(self.inner_dim * mlp_ratio), | |
| cross_attention_dim=cross_attention_dim, | |
| qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. | |
| skip=layer > num_layers // 2, | |
| after_norm=after_norm, | |
| time_position_encoding=time_position_encoding, | |
| enable_inpaint=self.enable_inpaint and enable_clip_in_inpaint, | |
| ) | |
| for layer in range(num_layers) | |
| ] | |
| ) | |
| self.n_query = n_query | |
| if self.enable_inpaint and enable_clip_in_inpaint: | |
| self.clip_padding = nn.Parameter( | |
| torch.randn((self.n_query, cross_attention_dim)) * 0.02 | |
| ) | |
| self.clip_projection = Resampler( | |
| int(math.sqrt(n_query)), | |
| embed_dim=cross_attention_dim, | |
| num_heads=self.config.num_attention_heads, | |
| kv_dim=projection_dim, | |
| norm_layer=nn.LayerNorm, | |
| ) | |
| else: | |
| self.clip_padding = None | |
| self.clip_projection = None | |
| self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
| self.gradient_checkpointing = False | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states, | |
| timestep, | |
| encoder_hidden_states=None, | |
| text_embedding_mask=None, | |
| encoder_hidden_states_t5=None, | |
| text_embedding_mask_t5=None, | |
| image_meta_size=None, | |
| style=None, | |
| image_rotary_emb=None, | |
| inpaint_latents=None, | |
| control_latents: torch.Tensor = None, | |
| clip_encoder_hidden_states: Optional[torch.Tensor]=None, | |
| clip_attention_mask: Optional[torch.Tensor]=None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| return_dict=True, | |
| ): | |
| """ | |
| The [`HunyuanDiT2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): | |
| The input tensor. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. | |
| encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of `BertModel`. | |
| text_embedding_mask: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of `BertModel`. | |
| encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. | |
| text_embedding_mask_t5: torch.Tensor | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | |
| of T5 Text Encoder. | |
| image_meta_size (torch.Tensor): | |
| Conditional embedding indicate the image sizes | |
| style: torch.Tensor: | |
| Conditional embedding indicate the style | |
| image_rotary_emb (`torch.Tensor`): | |
| The image rotary embeddings to apply on query and key tensors during attention calculation. | |
| return_dict: bool | |
| Whether to return a dictionary. | |
| """ | |
| if inpaint_latents is not None: | |
| hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
| if control_latents is not None: | |
| hidden_states = torch.concat([hidden_states, control_latents], 1) | |
| # unpatchify: (N, out_channels, H, W) | |
| patch_size = self.pos_embed.patch_size | |
| video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // patch_size, hidden_states.shape[-1] // patch_size | |
| hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
| hidden_states = self.pos_embed(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
| temb = self.time_extra_emb( | |
| timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype | |
| ) # [B, D] | |
| # text projection | |
| batch_size, sequence_length, _ = encoder_hidden_states_t5.shape | |
| encoder_hidden_states_t5 = self.text_embedder( | |
| encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) | |
| ) | |
| encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) | |
| text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) | |
| text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() | |
| encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) | |
| if clip_encoder_hidden_states is not None: | |
| batch_size = encoder_hidden_states.shape[0] | |
| clip_encoder_hidden_states = self.clip_projection(clip_encoder_hidden_states) | |
| clip_encoder_hidden_states = clip_encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1]) | |
| clip_attention_mask = clip_attention_mask.unsqueeze(2).bool() | |
| clip_encoder_hidden_states = torch.where(clip_attention_mask, clip_encoder_hidden_states, self.clip_padding) | |
| skips = [] | |
| for layer, block in enumerate(self.blocks): | |
| if layer > self.config.num_layers // 2: | |
| skip = skips.pop() | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| args = { | |
| "kvcompression_basic": [video_length, height, width, clip_encoder_hidden_states], | |
| "basic": [video_length, height, width, clip_encoder_hidden_states], | |
| "hybrid_attention": [video_length, height, width, clip_encoder_hidden_states], | |
| }[self.basic_block_type] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| image_rotary_emb, | |
| skip, | |
| *args, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| kwargs = { | |
| "kvcompression_basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| "basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| "hybrid_attention": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| }[self.basic_block_type] | |
| hidden_states = block( | |
| hidden_states, | |
| temb=temb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| skip=skip, | |
| **kwargs | |
| ) # (N, L, D) | |
| else: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| args = { | |
| "kvcompression_basic": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
| "basic": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
| "hybrid_attention": [None, video_length, height, width, clip_encoder_hidden_states, True if layer==0 else False], | |
| }[self.basic_block_type] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| image_rotary_emb, | |
| *args, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| kwargs = { | |
| "kvcompression_basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| "basic": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| "hybrid_attention": {"num_frames":video_length, "height":height, "width":width, "clip_encoder_hidden_states":clip_encoder_hidden_states}, | |
| }[self.basic_block_type] | |
| hidden_states = block( | |
| hidden_states, | |
| temb=temb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| disable_image_rotary_emb_in_attn1=True if layer==0 else False, | |
| **kwargs | |
| ) # (N, L, D) | |
| if layer < (self.config.num_layers // 2 - 1): | |
| skips.append(hidden_states) | |
| # final layer | |
| hidden_states = self.norm_out(hidden_states, temb.to(torch.float32)) | |
| hidden_states = self.proj_out(hidden_states) | |
| # (N, L, patch_size ** 2 * out_channels) | |
| hidden_states = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], video_length, height, width, patch_size, patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(hidden_states.shape[0], self.out_channels, video_length, height * patch_size, width * patch_size) | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |
| def from_pretrained_2d( | |
| cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size(): | |
| new_shape = model.state_dict()['pos_embed.proj.weight'].size() | |
| if len(new_shape) == 5: | |
| state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
| state_dict['pos_embed.proj.weight'][:, :, :-1] = 0 | |
| else: | |
| if model.state_dict()['pos_embed.proj.weight'].size()[1] > state_dict['pos_embed.proj.weight'].size()[1]: | |
| model.state_dict()['pos_embed.proj.weight'][:, :state_dict['pos_embed.proj.weight'].size()[1], :, :] = state_dict['pos_embed.proj.weight'] | |
| model.state_dict()['pos_embed.proj.weight'][:, state_dict['pos_embed.proj.weight'].size()[1]:, :, :] = 0 | |
| state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
| else: | |
| model.state_dict()['pos_embed.proj.weight'][:, :, :, :] = state_dict['pos_embed.proj.weight'][:, :model.state_dict()['pos_embed.proj.weight'].size()[1], :, :] | |
| state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
| if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size(): | |
| if model.state_dict()['proj_out.weight'].size()[0] > state_dict['proj_out.weight'].size()[0]: | |
| model.state_dict()['proj_out.weight'][:state_dict['proj_out.weight'].size()[0], :] = state_dict['proj_out.weight'] | |
| state_dict['proj_out.weight'] = model.state_dict()['proj_out.weight'] | |
| else: | |
| model.state_dict()['proj_out.weight'][:, :] = state_dict['proj_out.weight'][:model.state_dict()['proj_out.weight'].size()[0], :] | |
| state_dict['proj_out.weight'] = model.state_dict()['proj_out.weight'] | |
| if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size(): | |
| if model.state_dict()['proj_out.bias'].size()[0] > state_dict['proj_out.bias'].size()[0]: | |
| model.state_dict()['proj_out.bias'][:state_dict['proj_out.bias'].size()[0]] = state_dict['proj_out.bias'] | |
| state_dict['proj_out.bias'] = model.state_dict()['proj_out.bias'] | |
| else: | |
| model.state_dict()['proj_out.bias'][:, :] = state_dict['proj_out.bias'][:model.state_dict()['proj_out.bias'].size()[0], :] | |
| state_dict['proj_out.bias'] = model.state_dict()['proj_out.bias'] | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m) | |
| params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] | |
| print(f"### Mamba Parameters: {sum(params) / 1e6} M") | |
| params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model | |
| class EasyAnimateTransformer3DModel(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 30, | |
| attention_head_dim: int = 64, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| sample_width: int = 90, | |
| sample_height: int = 60, | |
| ref_channels: int = None, | |
| clip_channels: int = None, | |
| activation_fn: str = "gelu-approximate", | |
| timestep_activation_fn: str = "silu", | |
| freq_shift: int = 0, | |
| num_layers: int = 30, | |
| mmdit_layers: int = 10000, | |
| swa_layers: list = None, | |
| dropout: float = 0.0, | |
| time_embed_dim: int = 512, | |
| add_norm_text_encoder: bool = False, | |
| text_embed_dim: int = 4096, | |
| text_embed_dim_t5: int = 4096, | |
| norm_eps: float = 1e-5, | |
| norm_elementwise_affine: bool = True, | |
| flip_sin_to_cos: bool = True, | |
| time_position_encoding_type: str = "3d_rope", | |
| after_norm = False, | |
| resize_inpaint_mask_directly: bool = False, | |
| enable_clip_in_inpaint: bool = True, | |
| position_of_clip_embedding: str = "full", | |
| enable_text_attention_mask: bool = True, | |
| add_noise_in_inpaint_model: bool = False, | |
| add_ref_latent_in_control_model: bool = False, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_attention_heads | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.resize_inpaint_mask_directly = resize_inpaint_mask_directly | |
| self.patch_size = patch_size | |
| post_patch_height = sample_height // patch_size | |
| post_patch_width = sample_width // patch_size | |
| self.post_patch_height = post_patch_height | |
| self.post_patch_width = post_patch_width | |
| self.time_proj = Timesteps(self.inner_dim, flip_sin_to_cos, freq_shift) | |
| self.time_embedding = TimestepEmbedding(self.inner_dim, time_embed_dim, timestep_activation_fn) | |
| self.proj = nn.Conv2d( | |
| in_channels, self.inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True | |
| ) | |
| if not add_norm_text_encoder: | |
| self.text_proj = nn.Linear(text_embed_dim, self.inner_dim) | |
| if text_embed_dim_t5 is not None: | |
| self.text_proj_t5 = nn.Linear(text_embed_dim_t5, self.inner_dim) | |
| else: | |
| self.text_proj = nn.Sequential( | |
| EasyAnimateRMSNorm(text_embed_dim), | |
| nn.Linear(text_embed_dim, self.inner_dim) | |
| ) | |
| if text_embed_dim_t5 is not None: | |
| self.text_proj_t5 = nn.Sequential( | |
| EasyAnimateRMSNorm(text_embed_dim), | |
| nn.Linear(text_embed_dim_t5, self.inner_dim) | |
| ) | |
| if ref_channels is not None: | |
| self.ref_proj = nn.Conv2d( | |
| ref_channels, self.inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True | |
| ) | |
| ref_pos_embedding = get_2d_sincos_pos_embed(self.inner_dim, (post_patch_height, post_patch_width)) | |
| ref_pos_embedding = torch.from_numpy(ref_pos_embedding) | |
| self.register_buffer("ref_pos_embedding", ref_pos_embedding, persistent=False) | |
| if clip_channels is not None: | |
| self.clip_proj = nn.Linear(clip_channels, self.inner_dim) | |
| self.swa_layers = swa_layers | |
| if swa_layers is not None: | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| EasyAnimateDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| after_norm=after_norm, | |
| is_mmdit_block=True if index < mmdit_layers else False, | |
| is_swa=True if index in swa_layers else False, | |
| ) | |
| for index in range(num_layers) | |
| ] | |
| ) | |
| else: | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| EasyAnimateDiTBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| after_norm=after_norm, | |
| is_mmdit_block=True if _ < mmdit_layers else False, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.norm_final = nn.LayerNorm(self.inner_dim, norm_eps, norm_elementwise_affine) | |
| # 5. Output blocks | |
| self.norm_out = AdaLayerNorm( | |
| embedding_dim=time_embed_dim, | |
| output_dim=2 * self.inner_dim, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| chunk_dim=1, | |
| ) | |
| self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) | |
| self.gradient_checkpointing = False | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| self.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states, | |
| timestep, | |
| timestep_cond = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| text_embedding_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states_t5: Optional[torch.Tensor] = None, | |
| text_embedding_mask_t5: Optional[torch.Tensor] = None, | |
| image_meta_size = None, | |
| style = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| inpaint_latents: Optional[torch.Tensor] = None, | |
| control_latents: Optional[torch.Tensor] = None, | |
| ref_latents: Optional[torch.Tensor] = None, | |
| clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
| clip_attention_mask: Optional[torch.Tensor] = None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| return_dict=True, | |
| ): | |
| batch_size, channels, video_length, height, width = hidden_states.size() | |
| # 1. Time embedding | |
| temb = self.time_proj(timestep).to(dtype=hidden_states.dtype) | |
| temb = self.time_embedding(temb, timestep_cond) | |
| # 2. Patch embedding | |
| if inpaint_latents is not None: | |
| hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
| if control_latents is not None: | |
| hidden_states = torch.concat([hidden_states, control_latents], 1) | |
| hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=video_length, h=height // self.patch_size, w=width // self.patch_size) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
| encoder_hidden_states = self.text_proj(encoder_hidden_states) | |
| if encoder_hidden_states_t5 is not None: | |
| encoder_hidden_states_t5 = self.text_proj_t5(encoder_hidden_states_t5) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1).contiguous() | |
| if ref_latents is not None: | |
| ref_batch, ref_channels, ref_video_length, ref_height, ref_width = ref_latents.shape | |
| ref_latents = rearrange(ref_latents, "b c f h w ->(b f) c h w") | |
| ref_latents = self.ref_proj(ref_latents) | |
| ref_latents = rearrange(ref_latents, "(b f) c h w -> b c f h w", f=ref_video_length, h=ref_height // self.patch_size, w=ref_width // self.patch_size) | |
| ref_latents = ref_latents.flatten(2).transpose(1, 2) | |
| emb_size = hidden_states.size()[-1] | |
| ref_pos_embedding = self.ref_pos_embedding | |
| ref_pos_embedding_interpolate = ref_pos_embedding.view(1, 1, self.post_patch_height, self.post_patch_width, emb_size).permute([0, 4, 1, 2, 3]) | |
| ref_pos_embedding_interpolate = F.interpolate( | |
| ref_pos_embedding_interpolate, | |
| size=[1, height // self.config.patch_size, width // self.config.patch_size], | |
| mode='trilinear', align_corners=False | |
| ) | |
| ref_pos_embedding_interpolate = ref_pos_embedding_interpolate.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) | |
| ref_latents = ref_latents + ref_pos_embedding_interpolate | |
| encoder_hidden_states = ref_latents | |
| if clip_encoder_hidden_states is not None: | |
| clip_encoder_hidden_states = self.clip_proj(clip_encoder_hidden_states) | |
| encoder_hidden_states = torch.concat([clip_encoder_hidden_states, ref_latents], dim=1) | |
| # 4. Transformer blocks | |
| for i, block in enumerate(self.transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| image_rotary_emb, | |
| video_length, | |
| height // self.patch_size, | |
| width // self.patch_size, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states, encoder_hidden_states = block( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| num_frames=video_length, | |
| height=height // self.patch_size, | |
| width=width // self.patch_size | |
| ) | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| hidden_states = self.norm_final(hidden_states) | |
| hidden_states = hidden_states[:, encoder_hidden_states.size()[1]:] | |
| # 5. Final block | |
| hidden_states = self.norm_out(hidden_states, temb=temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| # 6. Unpatchify | |
| p = self.config.patch_size | |
| output = hidden_states.reshape(batch_size, video_length, height // p, width // p, channels, p, p) | |
| output = output.permute(0, 4, 1, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |
| def from_pretrained_2d( | |
| cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}, | |
| low_cpu_mem_usage=False, torch_dtype=torch.bfloat16 | |
| ): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if low_cpu_mem_usage: | |
| try: | |
| import re | |
| from diffusers.models.modeling_utils import \ | |
| load_model_dict_into_meta | |
| from diffusers.utils import is_accelerate_available | |
| if is_accelerate_available(): | |
| import accelerate | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| param_device = "cpu" | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| model._convert_deprecated_attention_blocks(state_dict) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
| if len(missing_keys) > 0: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| unexpected_keys = load_model_dict_into_meta( | |
| model, | |
| state_dict, | |
| device=param_device, | |
| dtype=torch_dtype, | |
| model_name_or_path=pretrained_model_path, | |
| ) | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
| ) | |
| return model | |
| except Exception as e: | |
| print( | |
| f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead." | |
| ) | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| if os.path.exists(model_file): | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| elif os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| from safetensors.torch import load_file, safe_open | |
| model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) | |
| state_dict = {} | |
| for model_file_safetensors in model_files_safetensors: | |
| _state_dict = load_file(model_file_safetensors) | |
| for key in _state_dict: | |
| state_dict[key] = _state_dict[key] | |
| if model.state_dict()['proj.weight'].size() != state_dict['proj.weight'].size(): | |
| new_shape = model.state_dict()['proj.weight'].size() | |
| if len(new_shape) == 5: | |
| state_dict['proj.weight'] = state_dict['proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
| state_dict['proj.weight'][:, :, :-1] = 0 | |
| else: | |
| if model.state_dict()['proj.weight'].size()[1] > state_dict['proj.weight'].size()[1]: | |
| model.state_dict()['proj.weight'][:, :state_dict['proj.weight'].size()[1], :, :] = state_dict['proj.weight'] | |
| model.state_dict()['proj.weight'][:, state_dict['proj.weight'].size()[1]:, :, :] = 0 | |
| state_dict['proj.weight'] = model.state_dict()['proj.weight'] | |
| else: | |
| model.state_dict()['proj.weight'][:, :, :, :] = state_dict['proj.weight'][:, :model.state_dict()['proj.weight'].size()[1], :, :] | |
| state_dict['proj.weight'] = model.state_dict()['proj.weight'] | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m) | |
| params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### All Parameters: {sum(params) / 1e6} M") | |
| params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### attn1 Parameters: {sum(params) / 1e6} M") | |
| model = model.to(torch_dtype) | |
| return model |