Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,115 @@ import pandas as pd
|
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
|
| 13 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class BasicAgent:
|
| 15 |
"""
|
| 16 |
This is the agent class that the GAIA test harness will use.
|
|
|
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
|
| 13 |
# --- Basic Agent Definition ---
|
| 14 |
+
# ==============================================================================
|
| 15 |
+
# 1. IMPORTS AND SETUP
|
| 16 |
+
# ==============================================================================
|
| 17 |
+
import os
|
| 18 |
+
from dotenv import load_dotenv
|
| 19 |
+
from typing import TypedDict, Annotated, List
|
| 20 |
+
|
| 21 |
+
# LangChain and LangGraph imports
|
| 22 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 23 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 24 |
+
from langchain_experimental.tools import PythonREPLTool
|
| 25 |
+
from langchain_core.messages import BaseMessage, HumanMessage
|
| 26 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 27 |
+
from langgraph.graph import StateGraph, END
|
| 28 |
+
from langgraph.prebuilt import ToolNode
|
| 29 |
+
|
| 30 |
+
# ==============================================================================
|
| 31 |
+
# 2. LOAD API KEYS AND DEFINE TOOLS
|
| 32 |
+
# ==============================================================================
|
| 33 |
+
load_dotenv()
|
| 34 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 35 |
+
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
| 36 |
+
|
| 37 |
+
if not hf_token or not tavily_api_key:
|
| 38 |
+
# This will show a clear error in the logs if keys are missing
|
| 39 |
+
raise ValueError("HF_TOKEN or TAVILY_API_KEY not set. Please add them to your Space secrets.")
|
| 40 |
+
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 41 |
+
|
| 42 |
+
# The agent's tools
|
| 43 |
+
tools = [TavilySearchResults(max_results=3, description="A search engine for finding up-to-date information on the web."), PythonREPLTool()]
|
| 44 |
+
tool_node = ToolNode(tools)
|
| 45 |
+
|
| 46 |
+
# ==============================================================================
|
| 47 |
+
# 3. CONFIGURE THE LLM (THE "BRAIN")
|
| 48 |
+
# ==============================================================================
|
| 49 |
+
# The model we'll use as the agent's brain
|
| 50 |
+
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 51 |
+
|
| 52 |
+
# The system prompt gives the agent its mission and instructions
|
| 53 |
+
SYSTEM_PROMPT = """You are a highly capable AI agent named 'GAIA-Solver'. Your mission is to accurately answer complex questions.
|
| 54 |
+
**Your Instructions:**
|
| 55 |
+
1. **Analyze:** Carefully read the user's question to understand all parts of what is being asked.
|
| 56 |
+
2. **Plan:** Think step-by-step. Break the problem into smaller tasks. Decide which tool is best for each task. (e.g., use 'tavily_search_results_json' for web searches, use 'python_repl' for calculations or code execution).
|
| 57 |
+
3. **Execute:** Call ONE tool at a time.
|
| 58 |
+
4. **Observe & Reason:** After getting a tool's result, observe it. Decide if you have the final answer or if you need to use another tool.
|
| 59 |
+
5. **Final Answer:** Once you are confident, provide a clear, direct, and concise final answer. Do not include your thought process in the final answer.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
# Initialize the LLM endpoint
|
| 63 |
+
llm = HuggingFaceEndpoint(
|
| 64 |
+
repo_id=repo_id,
|
| 65 |
+
huggingfacehub_api_token=hf_token,
|
| 66 |
+
temperature=0, # Set to 0 for deterministic, less random output
|
| 67 |
+
max_new_tokens=2048,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# ==============================================================================
|
| 71 |
+
# 4. BUILD THE LANGGRAPH AGENT
|
| 72 |
+
# ==============================================================================
|
| 73 |
+
|
| 74 |
+
# Define the Agent's State (its memory)
|
| 75 |
+
class AgentState(TypedDict):
|
| 76 |
+
messages: Annotated[List[BaseMessage], lambda x, y: x + y]
|
| 77 |
+
|
| 78 |
+
# This is a more robust way to combine the prompt, model, and tool binding
|
| 79 |
+
# It ensures the system prompt is always used.
|
| 80 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 81 |
+
|
| 82 |
+
# Define the Agent Node
|
| 83 |
+
def agent_node(state):
|
| 84 |
+
# Get the last message to pass to the model
|
| 85 |
+
last_message = state['messages'][-1]
|
| 86 |
+
|
| 87 |
+
# Prepend the system prompt to every call
|
| 88 |
+
prompt_with_system = [
|
| 89 |
+
HumanMessage(content=SYSTEM_PROMPT, name="system_prompt"),
|
| 90 |
+
last_message
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
response = llm_with_tools.invoke(prompt_with_system)
|
| 94 |
+
return {"messages": [response]}
|
| 95 |
+
|
| 96 |
+
# Define the Edge Logic
|
| 97 |
+
def should_continue(state):
|
| 98 |
+
last_message = state["messages"][-1]
|
| 99 |
+
if last_message.tool_calls:
|
| 100 |
+
return "tools" # Route to the tool node
|
| 101 |
+
return END # End the process
|
| 102 |
+
|
| 103 |
+
# Assemble the graph
|
| 104 |
+
workflow = StateGraph(AgentState)
|
| 105 |
+
workflow.add_node("agent", agent_node)
|
| 106 |
+
workflow.add_node("tools", tool_node)
|
| 107 |
+
workflow.set_entry_point("agent")
|
| 108 |
+
workflow.add_conditional_edges(
|
| 109 |
+
"agent",
|
| 110 |
+
should_continue,
|
| 111 |
+
{"tools": "tools", "end": END},
|
| 112 |
+
)
|
| 113 |
+
workflow.add_edge("tools", "agent")
|
| 114 |
+
|
| 115 |
+
# Compile the graph into a runnable app
|
| 116 |
+
app = workflow.compile()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# ==============================================================================
|
| 120 |
+
# 5. THE BASICAGENT CLASS (FOR THE TEST HARNESS)
|
| 121 |
+
# This MUST be at the end, after `app` is defined.
|
| 122 |
+
# ==============================================================================
|
| 123 |
class BasicAgent:
|
| 124 |
"""
|
| 125 |
This is the agent class that the GAIA test harness will use.
|