Spaces:
Runtime error
Runtime error
| """ | |
| The gradio demo server for chatting with a large multimodal model. | |
| Usage: | |
| python3 -m fastchat.serve.controller | |
| python3 -m fastchat.serve.sglang_worker --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf | |
| python3 -m fastchat.serve.gradio_web_server_multi --share --vision-arena | |
| """ | |
| import json | |
| import os | |
| import time | |
| from typing import List, Union | |
| import gradio as gr | |
| from gradio.data_classes import FileData | |
| import numpy as np | |
| from .constants import ( | |
| TEXT_MODERATION_MSG, | |
| IMAGE_MODERATION_MSG, | |
| MODERATION_MSG, | |
| CONVERSATION_LIMIT_MSG, | |
| INPUT_CHAR_LEN_LIMIT, | |
| CONVERSATION_TURN_LIMIT, | |
| SURVEY_LINK, | |
| ) | |
| # from fastchat.model.model_adapter import ( | |
| # get_conversation_template, | |
| # ) | |
| from .gradio_global_state import Context | |
| from .gradio_web_server import ( | |
| get_model_description_md, | |
| acknowledgment_md, | |
| bot_response, | |
| get_ip, | |
| disable_btn, | |
| State, | |
| get_conv_log_filename, | |
| get_remote_logger, | |
| ) | |
| # from fastchat.serve.vision.image import ImageFormat, Image | |
| from .utils import ( | |
| build_logger, | |
| moderation_filter, | |
| image_moderation_filter, | |
| ) | |
| logger = build_logger("gradio_web_server", "gradio_web_server.log") | |
| no_change_btn = gr.Button() | |
| enable_btn = gr.Button(interactive=True, visible=True) | |
| disable_btn = gr.Button(interactive=False) | |
| invisible_btn = gr.Button(interactive=False, visible=False) | |
| visible_image_column = gr.Image(visible=True) | |
| invisible_image_column = gr.Image(visible=False) | |
| enable_multimodal = gr.MultimodalTextbox( | |
| interactive=True, visible=True, placeholder="Enter your prompt or add image here" | |
| ) | |
| invisible_text = gr.Textbox(visible=False, value="", interactive=False) | |
| visible_text = gr.Textbox( | |
| visible=True, | |
| value="", | |
| interactive=True, | |
| placeholder="π Enter your prompt and press ENTER", | |
| ) | |
| disable_multimodal = gr.MultimodalTextbox( | |
| visible=False, value=None, interactive=False) | |
| def get_vqa_sample(): | |
| random_sample = np.random.choice(vqa_samples) | |
| question, path = random_sample["question"], random_sample["path"] | |
| res = {"text": "", "files": [path]} | |
| return (res, path) | |
| def set_visible_image(textbox): | |
| images = textbox["files"] | |
| if len(images) == 0: | |
| return invisible_image_column | |
| elif len(images) > 1: | |
| gr.Warning( | |
| "We only support single image conversations. Please start a new round if you would like to chat using this image." | |
| ) | |
| return visible_image_column | |
| def set_invisible_image(): | |
| return invisible_image_column | |
| def add_image(textbox): | |
| images = textbox["files"] | |
| if len(images) == 0: | |
| return None | |
| return images[0] | |
| def vote_last_response(state, vote_type, model_selector, request: gr.Request): | |
| filename = get_conv_log_filename(state.is_vision, state.has_csam_image) | |
| with open(filename, "a") as fout: | |
| data = { | |
| "tstamp": round(time.time(), 4), | |
| "type": vote_type, | |
| "model": model_selector, | |
| "state": state.dict(), | |
| "ip": get_ip(request), | |
| } | |
| fout.write(json.dumps(data) + "\n") | |
| get_remote_logger().log(data) | |
| def upvote_last_response(state, model_selector, request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"upvote. ip: {ip}") | |
| vote_last_response(state, "upvote", model_selector, request) | |
| return (None,) + (disable_btn,) * 3 | |
| def downvote_last_response(state, model_selector, request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"downvote. ip: {ip}") | |
| vote_last_response(state, "downvote", model_selector, request) | |
| return (None,) + (disable_btn,) * 3 | |
| def flag_last_response(state, model_selector, request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"flag. ip: {ip}") | |
| vote_last_response(state, "flag", model_selector, request) | |
| return (None,) + (disable_btn,) * 3 | |
| def regenerate(state, request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"regenerate. ip: {ip}") | |
| if not state.regen_support: | |
| state.skip_next = True | |
| return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 | |
| state.conv.update_last_message(None) | |
| return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5 | |
| def clear_history(request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"clear_history. ip: {ip}") | |
| state = None | |
| return (state, [], enable_multimodal, invisible_text, invisible_btn) + ( | |
| disable_btn, | |
| ) * 5 | |
| def clear_history_example(request: gr.Request): | |
| ip = get_ip(request) | |
| logger.info(f"clear_history_example. ip: {ip}") | |
| state = None | |
| return (state, [], enable_multimodal, invisible_text, invisible_btn) + ( | |
| disable_btn, | |
| ) * 5 | |
| # TODO(Chris): At some point, we would like this to be a live-reporting feature. | |
| def report_csam_image(state, image): | |
| pass | |
| def _prepare_text_with_image(state, text, images, csam_flag): | |
| if len(images) > 0: | |
| if len(state.conv.get_images()) > 0: | |
| # reset convo with new image | |
| state.conv = get_conversation_template(state.model_name) | |
| text = text, [images[0]] | |
| return text | |
| # NOTE(chris): take multiple images later on | |
| def convert_images_to_conversation_format(images): | |
| import base64 | |
| MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB = 5 / 1.5 | |
| conv_images = [] | |
| if len(images) > 0: | |
| conv_image = Image(url=images[0]) | |
| conv_image.to_conversation_format(MAX_NSFW_ENDPOINT_IMAGE_SIZE_IN_MB) | |
| conv_images.append(conv_image) | |
| return conv_images | |
| def moderate_input(state, text, all_conv_text, model_list, images, ip): | |
| text_flagged = moderation_filter(all_conv_text, model_list) | |
| # flagged = moderation_filter(text, [state.model_name]) | |
| nsfw_flagged, csam_flagged = False, False | |
| if len(images) > 0: | |
| nsfw_flagged, csam_flagged = image_moderation_filter(images[0]) | |
| image_flagged = nsfw_flagged or csam_flagged | |
| if text_flagged or image_flagged: | |
| logger.info(f"violate moderation. ip: {ip}. text: {all_conv_text}") | |
| if text_flagged and not image_flagged: | |
| # overwrite the original text | |
| text = TEXT_MODERATION_MSG | |
| elif not text_flagged and image_flagged: | |
| text = IMAGE_MODERATION_MSG | |
| elif text_flagged and image_flagged: | |
| text = MODERATION_MSG | |
| if csam_flagged: | |
| state.has_csam_image = True | |
| report_csam_image(state, images[0]) | |
| return text, image_flagged, csam_flagged | |
| def add_text( | |
| state, | |
| model_selector, | |
| chat_input: Union[str, dict], | |
| context: Context, | |
| request: gr.Request, | |
| ): | |
| if isinstance(chat_input, dict): | |
| text, images = chat_input["text"], chat_input["files"] | |
| else: | |
| text, images = chat_input, [] | |
| if ( | |
| len(images) > 0 | |
| and model_selector in context.text_models | |
| and model_selector not in context.vision_models | |
| ): | |
| gr.Warning(f"{model_selector} is a text-only model. Image is ignored.") | |
| images = [] | |
| ip = get_ip(request) | |
| logger.info(f"add_text. ip: {ip}. len: {len(text)}") | |
| if state is None: | |
| if len(images) == 0: | |
| state = State(model_selector, is_vision=False) | |
| else: | |
| state = State(model_selector, is_vision=True) | |
| if len(text) <= 0: | |
| state.skip_next = True | |
| return (state, state.to_gradio_chatbot(), None, "", no_change_btn) + ( | |
| no_change_btn, | |
| ) * 5 | |
| all_conv_text = state.conv.get_prompt() | |
| all_conv_text = all_conv_text[-2000:] + "\nuser: " + text | |
| images = convert_images_to_conversation_format(images) | |
| text, image_flagged, csam_flag = moderate_input( | |
| state, text, all_conv_text, [state.model_name], images, ip | |
| ) | |
| if image_flagged: | |
| logger.info(f"image flagged. ip: {ip}. text: {text}") | |
| state.skip_next = True | |
| return ( | |
| state, | |
| state.to_gradio_chatbot(), | |
| {"text": IMAGE_MODERATION_MSG}, | |
| "", | |
| no_change_btn, | |
| ) + (no_change_btn,) * 5 | |
| if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: | |
| logger.info(f"conversation turn limit. ip: {ip}. text: {text}") | |
| state.skip_next = True | |
| return ( | |
| state, | |
| state.to_gradio_chatbot(), | |
| {"text": CONVERSATION_LIMIT_MSG}, | |
| "", | |
| no_change_btn, | |
| ) + (no_change_btn,) * 5 | |
| text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off | |
| text = _prepare_text_with_image(state, text, images, csam_flag=csam_flag) | |
| state.conv.append_message(state.conv.roles[0], text) | |
| state.conv.append_message(state.conv.roles[1], None) | |
| return ( | |
| state, | |
| state.to_gradio_chatbot(), | |
| disable_multimodal, | |
| visible_text, | |
| enable_btn, | |
| ) + (disable_btn,) * 5 | |
| def build_single_vision_language_model_ui( | |
| context: Context, add_promotion_links=False, random_questions=None | |
| ): | |
| promotion = ( | |
| f""" | |
| [Blog](https://blog.lmarena.ai/blog/2023/arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2403.04132) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/6GXcFg3TH8) | [Kaggle Competition](https://www.kaggle.com/competitions/lmsys-chatbot-arena) | |
| {SURVEY_LINK} | |
| **βοΈ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.** | |
| Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image.""" | |
| if add_promotion_links | |
| else "" | |
| ) | |
| notice_markdown = f""" | |
| # ποΈ Chatbot Arena (formerly LMSYS): Free AI Chat to Compare & Test Best AI Chatbots | |
| {promotion} | |
| """ | |
| state = gr.State() | |
| gr.Markdown(notice_markdown, elem_id="notice_markdown") | |
| vision_not_in_text_models = [ | |
| model for model in context.vision_models if model not in context.text_models | |
| ] | |
| text_and_vision_models = context.text_models + vision_not_in_text_models | |
| context_state = gr.State(context) | |
| with gr.Group(): | |
| with gr.Row(elem_id="model_selector_row"): | |
| model_selector = gr.Dropdown( | |
| choices=text_and_vision_models, | |
| value=text_and_vision_models[0] | |
| if len(text_and_vision_models) > 0 | |
| else "", | |
| interactive=True, | |
| show_label=False, | |
| container=False, | |
| ) | |
| with gr.Accordion( | |
| f"π Expand to see the descriptions of {len(text_and_vision_models)} models", | |
| open=False, | |
| ): | |
| model_description_md = get_model_description_md( | |
| text_and_vision_models) | |
| gr.Markdown(model_description_md, | |
| elem_id="model_description_markdown") | |
| with gr.Row(): | |
| with gr.Column(scale=2, visible=False) as image_column: | |
| imagebox = gr.Image( | |
| type="pil", | |
| show_label=False, | |
| interactive=False, | |
| ) | |
| with gr.Column(scale=8): | |
| chatbot = gr.Chatbot( | |
| elem_id="chatbot", | |
| label="Scroll down and start chatting", | |
| height=650, | |
| show_copy_button=True, | |
| ) | |
| with gr.Row(): | |
| textbox = gr.Textbox( | |
| show_label=False, | |
| placeholder="π Enter your prompt and press ENTER", | |
| elem_id="input_box", | |
| visible=False, | |
| ) | |
| send_btn = gr.Button( | |
| value="Send", variant="primary", scale=0, visible=False, interactive=False | |
| ) | |
| multimodal_textbox = gr.MultimodalTextbox( | |
| file_types=["image"], | |
| show_label=False, | |
| placeholder="Enter your prompt or add image here", | |
| container=True, | |
| elem_id="input_box", | |
| ) | |
| with gr.Row(elem_id="buttons"): | |
| if random_questions: | |
| global vqa_samples | |
| with open(random_questions, "r") as f: | |
| vqa_samples = json.load(f) | |
| random_btn = gr.Button(value="π² Random Example", interactive=True) | |
| upvote_btn = gr.Button(value="π Upvote", interactive=False) | |
| downvote_btn = gr.Button(value="π Downvote", interactive=False) | |
| flag_btn = gr.Button(value="β οΈ Flag", interactive=False) | |
| regenerate_btn = gr.Button(value="π Regenerate", interactive=False) | |
| clear_btn = gr.Button(value="ποΈ Clear", interactive=False) | |
| with gr.Accordion("Parameters", open=False) as parameter_row: | |
| temperature = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.7, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.7, | |
| step=0.1, | |
| interactive=True, | |
| label="Top P", | |
| ) | |
| max_output_tokens = gr.Slider( | |
| minimum=0, | |
| maximum=2048, | |
| value=1024, | |
| step=64, | |
| interactive=True, | |
| label="Max output tokens", | |
| ) | |
| if add_promotion_links: | |
| gr.Markdown(acknowledgment_md, elem_id="ack_markdown") | |
| # Register listeners | |
| btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] | |
| upvote_btn.click( | |
| upvote_last_response, | |
| [state, model_selector], | |
| [textbox, upvote_btn, downvote_btn, flag_btn], | |
| ) | |
| downvote_btn.click( | |
| downvote_last_response, | |
| [state, model_selector], | |
| [textbox, upvote_btn, downvote_btn, flag_btn], | |
| ) | |
| flag_btn.click( | |
| flag_last_response, | |
| [state, model_selector], | |
| [textbox, upvote_btn, downvote_btn, flag_btn], | |
| ) | |
| regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then( | |
| bot_response, | |
| [state, temperature, top_p, max_output_tokens], | |
| [state, chatbot] + btn_list, | |
| ) | |
| clear_btn.click( | |
| clear_history, | |
| None, | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ) | |
| model_selector.change( | |
| clear_history, | |
| None, | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ).then(set_visible_image, [multimodal_textbox], [image_column]) | |
| multimodal_textbox.input(add_image, [multimodal_textbox], [imagebox]).then( | |
| set_visible_image, [multimodal_textbox], [image_column] | |
| ).then( | |
| clear_history_example, | |
| None, | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ) | |
| multimodal_textbox.submit( | |
| add_text, | |
| [state, model_selector, multimodal_textbox, context_state], | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ).then(set_invisible_image, [], [image_column]).then( | |
| bot_response, | |
| [state, temperature, top_p, max_output_tokens], | |
| [state, chatbot] + btn_list, | |
| ) | |
| textbox.submit( | |
| add_text, | |
| [state, model_selector, textbox, context_state], | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ).then(set_invisible_image, [], [image_column]).then( | |
| bot_response, | |
| [state, temperature, top_p, max_output_tokens], | |
| [state, chatbot] + btn_list, | |
| ) | |
| send_btn.click( | |
| add_text, | |
| [state, model_selector, textbox, context_state], | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ).then(set_invisible_image, [], [image_column]).then( | |
| bot_response, | |
| [state, temperature, top_p, max_output_tokens], | |
| [state, chatbot] + btn_list, | |
| ) | |
| if random_questions: | |
| random_btn.click( | |
| get_vqa_sample, # First, get the VQA sample | |
| [], # Pass the path to the VQA samples | |
| [multimodal_textbox, imagebox], # Outputs are textbox and imagebox | |
| ).then(set_visible_image, [multimodal_textbox], [image_column]).then( | |
| clear_history_example, | |
| None, | |
| [state, chatbot, multimodal_textbox, textbox, send_btn] + btn_list, | |
| ) | |
| return [state, model_selector] | |