File size: 3,349 Bytes
eb8c5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# core/script_generator.py
import asyncio
import uuid
from typing import List, Dict
from config import OPENROUTER_API_KEY
from core.seed_manager import SeedManager
import httpx
import json

# Initialize seed manager
seed_manager = SeedManager()

# ---------------- OPENROUTER LLM CALL ----------------
async def _call_openrouter_llm(prompt: str) -> str:
    """

    Calls OpenRouter LLM to generate proposed video script.

    Returns the raw text script.

    """
    url = "https://api.openrouter.ai/v1/chat/completions"
    headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
    payload = {
        "model": "gpt-4.1-mini",  # powerful and suitable for script generation
        "messages": [
            {"role": "system", "content": "You are a professional creative video script writer."},
            {"role": "user", "content": prompt}
        ],
        "max_tokens": 1500,
        "temperature": 0.7
    }

    async with httpx.AsyncClient(timeout=60) as client:
        response = await client.post(url, json=payload, headers=headers)
        response.raise_for_status()
        data = response.json()
        # OpenRouter returns message content in choices[0].message.content
        return data["choices"][0]["message"]["content"]

# ---------------- SCRIPT PROCESSING ----------------
def parse_script_to_scenes(script_text: str) -> List[Dict]:
    """

    Converts a script text into scene + keyframe JSON.

    Each scene may have multiple keyframes.

    Assigns unique scene_ids and seeds.

    """
    scenes_json = []
    scene_counter = 1
    keyframe_counter = 1

    lines = [line.strip() for line in script_text.split("\n") if line.strip()]
    for line in lines:
        # Generate a unique scene_id and seed for this scene
        scene_id = scene_counter
        seed = seed_manager.generate_seed(scene_id)

        # We assume each line is a keyframe
        scenes_json.append({
            "scene": scene_counter,
            "scene_id": scene_id,
            "keyframe_number": keyframe_counter,
            "description": line,
            "camera": "default",  # can be improved later
            "seed": seed
        })

        keyframe_counter += 1
        scene_counter += 1

    return scenes_json

# ---------------- MAIN FUNCTION ----------------
async def generate_script_async(idea: str, user_confirmed: bool = True) -> List[Dict]:
    """

    Full pipeline for script generation:

    1. Generates proposed script from LLM

    2. Waits for user confirmation

    3. Converts confirmed script into scene + keyframe JSON

    """
    prompt = f"Create a professional video script for: {idea}. Write each scene in one line."
    raw_script = await _call_openrouter_llm(prompt)

    # Here you can integrate actual user confirmation in your frontend
    if not user_confirmed:
        return [{"proposed_script": raw_script}]

    # Convert approved script into structured scene/keyframe JSON
    scenes = parse_script_to_scenes(raw_script)
    return scenes

def generate_script(idea: str, user_confirmed: bool = True) -> List[Dict]:
    """

    Synchronous wrapper for pipeline integration.

    """
    return asyncio.get_event_loop().run_until_complete(
        generate_script_async(idea, user_confirmed)
    )