Spaces:
Sleeping
Sleeping
Update core/image_generator.py
Browse files- core/image_generator.py +85 -85
core/image_generator.py
CHANGED
|
@@ -1,85 +1,85 @@
|
|
| 1 |
-
# core/image_generator.py
|
| 2 |
-
import os
|
| 3 |
-
import torch
|
| 4 |
-
from diffusers import StableDiffusionXLPipeline
|
| 5 |
-
from huggingface_hub import hf_hub_download
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
from typing import List
|
| 8 |
-
|
| 9 |
-
# ---------------- MODEL CONFIG ----------------
|
| 10 |
-
MODEL_REPO = "SG161222/RealVisXL_V4.0"
|
| 11 |
-
MODEL_FILENAME = "realvisxlV40_v40LightningBakedvae.safetensors"
|
| 12 |
-
MODEL_DIR = Path("/tmp/models/realvisxl_v4")
|
| 13 |
-
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 14 |
-
|
| 15 |
-
# ---------------- MODEL DOWNLOAD ----------------
|
| 16 |
-
def download_model() -> Path:
|
| 17 |
-
"""
|
| 18 |
-
Downloads RealVisXL V4.0 model if not present.
|
| 19 |
-
Returns the local model path.
|
| 20 |
-
"""
|
| 21 |
-
model_path = MODEL_DIR / MODEL_FILENAME
|
| 22 |
-
if not model_path.exists():
|
| 23 |
-
print("[ImageGen] Downloading RealVisXL V4.0 model...")
|
| 24 |
-
model_path = hf_hub_download(
|
| 25 |
-
repo_id=MODEL_REPO,
|
| 26 |
-
filename=MODEL_FILENAME,
|
| 27 |
-
local_dir=str(MODEL_DIR),
|
| 28 |
-
force_download=False,
|
| 29 |
-
)
|
| 30 |
-
print(f"[ImageGen] Model downloaded to: {model_path}")
|
| 31 |
-
else:
|
| 32 |
-
print("[ImageGen] Model already exists. Skipping download.")
|
| 33 |
-
return model_path
|
| 34 |
-
|
| 35 |
-
# ---------------- PIPELINE LOAD ----------------
|
| 36 |
-
def load_pipeline() -> StableDiffusionXLPipeline:
|
| 37 |
-
"""
|
| 38 |
-
Loads the RealVisXL V4.0 model for image generation.
|
| 39 |
-
"""
|
| 40 |
-
model_path = download_model()
|
| 41 |
-
print("[ImageGen] Loading model into pipeline...")
|
| 42 |
-
pipe = StableDiffusionXLPipeline.from_single_file(
|
| 43 |
-
str(model_path),
|
| 44 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 45 |
-
)
|
| 46 |
-
if torch.cuda.is_available():
|
| 47 |
-
pipe.to("cuda")
|
| 48 |
-
print("[ImageGen] Model ready.")
|
| 49 |
-
return pipe
|
| 50 |
-
|
| 51 |
-
# ---------------- GLOBAL PIPELINE CACHE ----------------
|
| 52 |
-
pipe: StableDiffusionXLPipeline | None = None
|
| 53 |
-
|
| 54 |
-
# ---------------- IMAGE GENERATION ----------------
|
| 55 |
-
def generate_images(prompt: str, seed: int = None, num_images: int = 3) -> List:
|
| 56 |
-
"""
|
| 57 |
-
Generates high-quality images using RealVisXL V4.0.
|
| 58 |
-
Supports deterministic generation using a seed.
|
| 59 |
-
|
| 60 |
-
Args:
|
| 61 |
-
prompt (str): Text prompt for image generation.
|
| 62 |
-
seed (int, optional): Seed for deterministic generation.
|
| 63 |
-
num_images (int): Number of images to generate.
|
| 64 |
-
|
| 65 |
-
Returns:
|
| 66 |
-
List: Generated PIL images.
|
| 67 |
-
"""
|
| 68 |
-
global pipe
|
| 69 |
-
if pipe is None:
|
| 70 |
-
pipe = load_pipeline()
|
| 71 |
-
|
| 72 |
-
print(f"[ImageGen] Generating {num_images} image(s) for prompt: '{prompt}' with seed={seed}")
|
| 73 |
-
images = []
|
| 74 |
-
|
| 75 |
-
for i in range(num_images):
|
| 76 |
-
generator = None
|
| 77 |
-
if seed is not None:
|
| 78 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 79 |
-
generator = torch.Generator(device).manual_seed(seed + i) # slightly vary keyframes
|
| 80 |
-
|
| 81 |
-
result = pipe(prompt, num_inference_steps=30, generator=generator).images[0]
|
| 82 |
-
images.append(result)
|
| 83 |
-
|
| 84 |
-
print(f"[ImageGen] Generated {len(images)} images successfully.")
|
| 85 |
-
return images
|
|
|
|
| 1 |
+
# core/image_generator.py
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionXLPipeline
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
# ---------------- MODEL CONFIG ----------------
|
| 10 |
+
MODEL_REPO = "SG161222/RealVisXL_V4.0"
|
| 11 |
+
MODEL_FILENAME = "realvisxlV40_v40LightningBakedvae.safetensors"
|
| 12 |
+
MODEL_DIR = Path("/tmp/models/realvisxl_v4")
|
| 13 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# ---------------- MODEL DOWNLOAD ----------------
|
| 16 |
+
def download_model() -> Path:
|
| 17 |
+
"""
|
| 18 |
+
Downloads RealVisXL V4.0 model if not present.
|
| 19 |
+
Returns the local model path.
|
| 20 |
+
"""
|
| 21 |
+
model_path = MODEL_DIR / MODEL_FILENAME
|
| 22 |
+
if not model_path.exists():
|
| 23 |
+
print("[ImageGen] Downloading RealVisXL V4.0 model...")
|
| 24 |
+
model_path = hf_hub_download(
|
| 25 |
+
repo_id=MODEL_REPO,
|
| 26 |
+
filename=MODEL_FILENAME,
|
| 27 |
+
local_dir=str(MODEL_DIR),
|
| 28 |
+
force_download=False,
|
| 29 |
+
)
|
| 30 |
+
print(f"[ImageGen] Model downloaded to: {model_path}")
|
| 31 |
+
else:
|
| 32 |
+
print("[ImageGen] Model already exists. Skipping download.")
|
| 33 |
+
return model_path
|
| 34 |
+
|
| 35 |
+
# ---------------- PIPELINE LOAD ----------------
|
| 36 |
+
def load_pipeline() -> StableDiffusionXLPipeline:
|
| 37 |
+
"""
|
| 38 |
+
Loads the RealVisXL V4.0 model for image generation.
|
| 39 |
+
"""
|
| 40 |
+
model_path = download_model()
|
| 41 |
+
print("[ImageGen] Loading model into pipeline...")
|
| 42 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
| 43 |
+
str(model_path),
|
| 44 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 45 |
+
)
|
| 46 |
+
if torch.cuda.is_available():
|
| 47 |
+
pipe.to("cuda")
|
| 48 |
+
print("[ImageGen] Model ready.")
|
| 49 |
+
return pipe
|
| 50 |
+
|
| 51 |
+
# ---------------- GLOBAL PIPELINE CACHE ----------------
|
| 52 |
+
pipe: StableDiffusionXLPipeline | None = None
|
| 53 |
+
|
| 54 |
+
# ---------------- IMAGE GENERATION ----------------
|
| 55 |
+
def generate_images(prompt: str, seed: int = None, num_images: int = 3) -> List:
|
| 56 |
+
"""
|
| 57 |
+
Generates high-quality images using RealVisXL V4.0.
|
| 58 |
+
Supports deterministic generation using a seed.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
prompt (str): Text prompt for image generation.
|
| 62 |
+
seed (int, optional): Seed for deterministic generation.
|
| 63 |
+
num_images (int): Number of images to generate.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
List: Generated PIL images.
|
| 67 |
+
"""
|
| 68 |
+
global pipe
|
| 69 |
+
if pipe is None:
|
| 70 |
+
pipe = load_pipeline()
|
| 71 |
+
|
| 72 |
+
print(f"[ImageGen] Generating {num_images} image(s) for prompt: '{prompt}' with seed={seed}")
|
| 73 |
+
images = []
|
| 74 |
+
|
| 75 |
+
for i in range(num_images):
|
| 76 |
+
generator = None
|
| 77 |
+
if seed is not None:
|
| 78 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 79 |
+
generator = torch.Generator(device).manual_seed(seed + i) # slightly vary keyframes
|
| 80 |
+
|
| 81 |
+
result = pipe(prompt, num_inference_steps=30, generator=generator).images[0]
|
| 82 |
+
images.append(pil_to_base64(result))
|
| 83 |
+
|
| 84 |
+
print(f"[ImageGen] Generated {len(images)} images successfully.")
|
| 85 |
+
return images
|