Spaces:
Sleeping
Sleeping
File size: 9,289 Bytes
71238f4 95abdcd 6f54f12 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 71238f4 f16694e 379dbbe 8cf2b09 f16694e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
from PIL import Image
import torch
import os
import sys
from huggingface_hub import login
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
import uvicorn
# Import spaces module for ZeroGPU support
try:
import spaces
has_spaces = True
print("ZeroGPU support enabled via spaces module")
except ImportError:
has_spaces = False
print("spaces module not found, ZeroGPU features will be disabled")
# Create examples directory if it doesn't exist
os.makedirs("examples", exist_ok=True)
# Authenticate with Hugging Face Hub using environment variable
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
print("Warning: HF_TOKEN environment variable not set. Some features may not work.")
# Model and device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Model identifier - hardcode the correct model path instead of using environment variables
model_id = "thorscribe/thorscribe-model-3"
print(f"Using model: {model_id}")
# Determine dtype based on available hardware
if device == "cuda":
if torch.cuda.is_bf16_supported():
torch_dtype = torch.bfloat16
print("Using bfloat16 precision")
else:
torch_dtype = torch.float16
print("Using float16 precision")
else:
torch_dtype = torch.float32
print("Using float32 precision (CPU mode)")
# Calculate target dimensions - using fixed dimensions
target_size = 1024 # Use a fixed size that works well with the model
print(f"Using fixed image resolution of {target_size}x{target_size}")
def pad_to_square(image, background_color=(0, 0, 0)):
"""Pad image to square with black background"""
if image is None:
return None
width, height = image.size
if width == height:
return image
new_size = max(width, height)
new_image = Image.new('RGB', (new_size, new_size), background_color)
# Paste the original image centered in the square
paste_x = (new_size - width) // 2
paste_y = (new_size - height) // 2
new_image.paste(image, (paste_x, paste_y))
return new_image
def process_image(image, size=1024):
"""Process image to be suitable for the model"""
if image is None:
return None
# First make the image square by padding
image = pad_to_square(image)
# Then resize to the target size
image = image.resize((size, size), Image.LANCZOS)
print(f"Processed image to {image.size[0]}x{image.size[1]}")
return image
# Load processor first (lower memory requirements)
print(f"Loading processor from {model_id}...")
try:
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
print("Processor loaded successfully!")
except Exception as e:
print(f"Error loading processor: {str(e)}")
sys.exit(1)
# Load and inspect model config via AutoConfig
try:
cfg = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
print("Vision config - patch_size:", cfg.vision_config.patch_size)
print("Vision config - patch_stride:", cfg.vision_config.patch_stride)
print("Vision config - patch_padding:", cfg.vision_config.patch_padding)
except Exception as e:
print(f"Error loading model config: {str(e)}")
sys.exit(1)
# Load model with explicit config
try:
print(f"Loading model from {model_id}...")
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=cfg,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
trust_remote_code=True
)
# Only move model to GPU when we're actually using it
# Will be handled by the @spaces.GPU decorator
if not has_spaces and device == "cuda":
model.to(device)
print("Model moved to CUDA device")
print("Model loaded successfully with explicit config!")
except Exception as e:
print(f"Error loading model: {str(e)}")
import traceback
print(traceback.format_exc())
sys.exit(1)
# Default prompt to use (hidden from UI)
DEFAULT_PROMPT = "<THORSCRIBE> What does this figure show?"
# Define the generation function with ZeroGPU decorator if available
if has_spaces:
@spaces.GPU(duration=60) # Set appropriate duration based on your model's generation time
def generate_caption(image):
if image is None:
return "Please upload an image."
try:
# Move model to GPU when using ZeroGPU
model.to(device)
# Process the image to be suitable for the model
processed_image = process_image(image, size=target_size)
# Process text and image separately
pixel_values = processor.image_processor(images=processed_image, return_tensors="pt").pixel_values
# Process the text with controlled parameters
input_ids = processor.tokenizer(
DEFAULT_PROMPT,
return_tensors="pt",
padding="max_length",
max_length=77, # Use a safe, reasonable value
truncation=True
).input_ids
# Build inputs dictionary
inputs = {
"pixel_values": pixel_values.to(device, dtype=torch_dtype),
"input_ids": input_ids.to(device)
}
# Generate with conservative settings
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
num_beams=1,
do_sample=False
)
# Decode and truncate
text = processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return text
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error: {str(e)}")
print(trace)
return f"Error processing image: {str(e)[:200]}. Check console for full traceback."
else:
# Regular function without ZeroGPU
def generate_caption(image):
if image is None:
return "Please upload an image."
try:
# Process the image to be suitable for the model
processed_image = process_image(image, size=target_size)
# Process text and image separately
pixel_values = processor.image_processor(images=processed_image, return_tensors="pt").pixel_values
# Process the text with controlled parameters
input_ids = processor.tokenizer(
DEFAULT_PROMPT,
return_tensors="pt",
padding="max_length",
max_length=77, # Use a safe, reasonable value
truncation=True
).input_ids
# Build inputs dictionary
inputs = {
"pixel_values": pixel_values.to(device, dtype=torch_dtype),
"input_ids": input_ids.to(device)
}
# Generate with conservative settings
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
num_beams=1,
do_sample=False
)
# Decode and truncate
text = processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return text
except Exception as e:
import traceback
trace = traceback.format_exc()
print(f"Error: {str(e)}")
print(trace)
return f"Error processing image: {str(e)[:200]}. Check console for full traceback."
# Create a simple Gradio interface without FastAPI integration
demo = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil", label="Upload Thoracic MRI/X-ray Image"),
outputs=gr.Textbox(label="Generated Caption", lines=5, max_lines=5, show_copy_button=True),
title="THORSCRIBE: AI-Powered Thoracic Image Captioning",
description="THORSCRIBE is an advanced AI model that generates detailed captions for MRI and X-ray images of the thorax area. Upload your medical image to receive an informative caption." + (" (with ZeroGPU)" if has_spaces else ""),
allow_flagging="never",
theme=gr.themes.Monochrome(),
examples=["examples/example1.jpg", "examples/example2.jpg", "examples/example3.jpg", "examples/example4.jpg"] if os.path.exists("examples/example1.jpg") else None,
article="<div style='text-align: center; max-width: 800px; margin: 0 auto;'><h3>About THORSCRIBE</h3><p>THORSCRIBE is specialized in analyzing thoracic medical imagery, providing accurate descriptions of findings in MRI and X-ray images. This tool is designed to assist medical professionals in their diagnostic workflows.</p><p><small>Powered by model: thorscribe/thorscribe-model-3</small></p></div>"
)
# Launch the app - Use 7860 which is the standard port for Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True,
) |