import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate # Load the tokenizer and model for t5-base tokenizer = T5Tokenizer.from_pretrained("t5-base") model = T5ForConditionalGeneration.from_pretrained("t5-base") # Set up conversational memory using LangChain's ConversationBufferMemory memory = ConversationBufferMemory() # Define the chatbot function with memory def chat_with_t5(input_text): # Retrieve conversation history and append the current user input conversation_history = memory.load_memory_variables({})['history'] # Combine the history with the current user input # For regular T5, we need to prompt the model differently since it's not instruction-tuned like FLAN-T5 # Using a simple summarization prompt format as an example, you can modify as needed full_input = f"User: {input_text}\nAssistant:" if conversation_history: full_input = f"Previous conversation: {conversation_history}\n{full_input}" # Tokenize the input for the model input_ids = tokenizer.encode(full_input, return_tensors="pt") # Generate the response from the model outputs = model.generate(input_ids, max_length=200, num_return_sequences=1) # Decode the model output response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Update the memory with the user input and model response memory.save_context({"input": input_text}, {"output": response}) return response # Set up the Gradio interface interface = gr.Interface( fn=chat_with_t5, inputs=gr.Textbox(label="Chat with T5-Base"), outputs=gr.Textbox(label="T5-Base's Response"), title="T5-Base Chatbot with Memory", description="This is a simple chatbot powered by the T5-base model with conversational memory, using LangChain.", ) # Launch the Gradio app interface.launch()