Spaces:
Paused
Paused
| import os, types | |
| import json | |
| from enum import Enum | |
| import requests | |
| import time | |
| from typing import Callable, Optional | |
| from litellm.utils import ModelResponse, Usage | |
| import litellm | |
| from .prompt_templates.factory import prompt_factory, custom_prompt | |
| import httpx | |
| class AnthropicConstants(Enum): | |
| HUMAN_PROMPT = "\n\nHuman: " | |
| AI_PROMPT = "\n\nAssistant: " | |
| class AnthropicError(Exception): | |
| def __init__(self, status_code, message): | |
| self.status_code = status_code | |
| self.message = message | |
| self.request = httpx.Request( | |
| method="POST", url="https://api.anthropic.com/v1/complete" | |
| ) | |
| self.response = httpx.Response(status_code=status_code, request=self.request) | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class AnthropicConfig: | |
| """ | |
| Reference: https://docs.anthropic.com/claude/reference/complete_post | |
| to pass metadata to anthropic, it's {"user_id": "any-relevant-information"} | |
| """ | |
| max_tokens_to_sample: Optional[ | |
| int | |
| ] = litellm.max_tokens # anthropic requires a default | |
| stop_sequences: Optional[list] = None | |
| temperature: Optional[int] = None | |
| top_p: Optional[int] = None | |
| top_k: Optional[int] = None | |
| metadata: Optional[dict] = None | |
| def __init__( | |
| self, | |
| max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default | |
| stop_sequences: Optional[list] = None, | |
| temperature: Optional[int] = None, | |
| top_p: Optional[int] = None, | |
| top_k: Optional[int] = None, | |
| metadata: Optional[dict] = None, | |
| ) -> None: | |
| locals_ = locals() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| # makes headers for API call | |
| def validate_environment(api_key): | |
| if api_key is None: | |
| raise ValueError( | |
| "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" | |
| ) | |
| headers = { | |
| "accept": "application/json", | |
| "anthropic-version": "2023-06-01", | |
| "content-type": "application/json", | |
| "x-api-key": api_key, | |
| } | |
| return headers | |
| def completion( | |
| model: str, | |
| messages: list, | |
| api_base: str, | |
| custom_prompt_dict: dict, | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| api_key, | |
| logging_obj, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| headers = validate_environment(api_key) | |
| if model in custom_prompt_dict: | |
| # check if the model has a registered custom prompt | |
| model_prompt_details = custom_prompt_dict[model] | |
| prompt = custom_prompt( | |
| role_dict=model_prompt_details["roles"], | |
| initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
| final_prompt_value=model_prompt_details["final_prompt_value"], | |
| messages=messages, | |
| ) | |
| else: | |
| prompt = prompt_factory( | |
| model=model, messages=messages, custom_llm_provider="anthropic" | |
| ) | |
| ## Load Config | |
| config = litellm.AnthropicConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| data = { | |
| "model": model, | |
| "prompt": prompt, | |
| **optional_params, | |
| } | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data, "api_base": api_base}, | |
| ) | |
| ## COMPLETION CALL | |
| if "stream" in optional_params and optional_params["stream"] == True: | |
| response = requests.post( | |
| api_base, | |
| headers=headers, | |
| data=json.dumps(data), | |
| stream=optional_params["stream"], | |
| ) | |
| if response.status_code != 200: | |
| raise AnthropicError( | |
| status_code=response.status_code, message=response.text | |
| ) | |
| return response.iter_lines() | |
| else: | |
| response = requests.post(api_base, headers=headers, data=json.dumps(data)) | |
| if response.status_code != 200: | |
| raise AnthropicError( | |
| status_code=response.status_code, message=response.text | |
| ) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key=api_key, | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response.text}") | |
| ## RESPONSE OBJECT | |
| try: | |
| completion_response = response.json() | |
| except: | |
| raise AnthropicError( | |
| message=response.text, status_code=response.status_code | |
| ) | |
| if "error" in completion_response: | |
| raise AnthropicError( | |
| message=str(completion_response["error"]), | |
| status_code=response.status_code, | |
| ) | |
| else: | |
| if len(completion_response["completion"]) > 0: | |
| model_response["choices"][0]["message"][ | |
| "content" | |
| ] = completion_response["completion"] | |
| model_response.choices[0].finish_reason = completion_response["stop_reason"] | |
| ## CALCULATING USAGE | |
| prompt_tokens = len( | |
| encoding.encode(prompt) | |
| ) ##[TODO] use the anthropic tokenizer here | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
| ) ##[TODO] use the anthropic tokenizer here | |
| model_response["created"] = int(time.time()) | |
| model_response["model"] = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| model_response.usage = usage | |
| return model_response | |
| def embedding(): | |
| # logic for parsing in - calling - parsing out model embedding calls | |
| pass | |