Spaces:
Paused
Paused
| ## Uses the huggingface text generation inference API | |
| import os, copy, types | |
| import json | |
| from enum import Enum | |
| import httpx, requests | |
| from .base import BaseLLM | |
| import time | |
| import litellm | |
| from typing import Callable, Dict, List, Any | |
| from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, Usage | |
| from typing import Optional | |
| from .prompt_templates.factory import prompt_factory, custom_prompt | |
| class HuggingfaceError(Exception): | |
| def __init__( | |
| self, | |
| status_code, | |
| message, | |
| request: Optional[httpx.Request] = None, | |
| response: Optional[httpx.Response] = None, | |
| ): | |
| self.status_code = status_code | |
| self.message = message | |
| if request is not None: | |
| self.request = request | |
| else: | |
| self.request = httpx.Request( | |
| method="POST", url="https://api-inference.huggingface.co/models" | |
| ) | |
| if response is not None: | |
| self.response = response | |
| else: | |
| self.response = httpx.Response( | |
| status_code=status_code, request=self.request | |
| ) | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class HuggingfaceConfig: | |
| """ | |
| Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate | |
| """ | |
| best_of: Optional[int] = None | |
| decoder_input_details: Optional[bool] = None | |
| details: Optional[bool] = True # enables returning logprobs + best of | |
| max_new_tokens: Optional[int] = None | |
| repetition_penalty: Optional[float] = None | |
| return_full_text: Optional[ | |
| bool | |
| ] = False # by default don't return the input as part of the output | |
| seed: Optional[int] = None | |
| temperature: Optional[float] = None | |
| top_k: Optional[int] = None | |
| top_n_tokens: Optional[int] = None | |
| top_p: Optional[int] = None | |
| truncate: Optional[int] = None | |
| typical_p: Optional[float] = None | |
| watermark: Optional[bool] = None | |
| def __init__( | |
| self, | |
| best_of: Optional[int] = None, | |
| decoder_input_details: Optional[bool] = None, | |
| details: Optional[bool] = None, | |
| max_new_tokens: Optional[int] = None, | |
| repetition_penalty: Optional[float] = None, | |
| return_full_text: Optional[bool] = None, | |
| seed: Optional[int] = None, | |
| temperature: Optional[float] = None, | |
| top_k: Optional[int] = None, | |
| top_n_tokens: Optional[int] = None, | |
| top_p: Optional[int] = None, | |
| truncate: Optional[int] = None, | |
| typical_p: Optional[float] = None, | |
| watermark: Optional[bool] = None, | |
| ) -> None: | |
| locals_ = locals() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| def output_parser(generated_text: str): | |
| """ | |
| Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens. | |
| Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763 | |
| """ | |
| chat_template_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"] | |
| for token in chat_template_tokens: | |
| if generated_text.strip().startswith(token): | |
| generated_text = generated_text.replace(token, "", 1) | |
| if generated_text.endswith(token): | |
| generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1] | |
| return generated_text | |
| tgi_models_cache = None | |
| conv_models_cache = None | |
| def read_tgi_conv_models(): | |
| try: | |
| global tgi_models_cache, conv_models_cache | |
| # Check if the cache is already populated | |
| # so we don't keep on reading txt file if there are 1k requests | |
| if (tgi_models_cache is not None) and (conv_models_cache is not None): | |
| return tgi_models_cache, conv_models_cache | |
| # If not, read the file and populate the cache | |
| tgi_models = set() | |
| script_directory = os.path.dirname(os.path.abspath(__file__)) | |
| # Construct the file path relative to the script's directory | |
| file_path = os.path.join( | |
| script_directory, | |
| "huggingface_llms_metadata", | |
| "hf_text_generation_models.txt", | |
| ) | |
| with open(file_path, "r") as file: | |
| for line in file: | |
| tgi_models.add(line.strip()) | |
| # Cache the set for future use | |
| tgi_models_cache = tgi_models | |
| # If not, read the file and populate the cache | |
| file_path = os.path.join( | |
| script_directory, | |
| "huggingface_llms_metadata", | |
| "hf_conversational_models.txt", | |
| ) | |
| conv_models = set() | |
| with open(file_path, "r") as file: | |
| for line in file: | |
| conv_models.add(line.strip()) | |
| # Cache the set for future use | |
| conv_models_cache = conv_models | |
| return tgi_models, conv_models | |
| except: | |
| return set(), set() | |
| def get_hf_task_for_model(model): | |
| # read text file, cast it to set | |
| # read the file called "huggingface_llms_metadata/hf_text_generation_models.txt" | |
| tgi_models, conversational_models = read_tgi_conv_models() | |
| if model in tgi_models: | |
| return "text-generation-inference" | |
| elif model in conversational_models: | |
| return "conversational" | |
| elif "roneneldan/TinyStories" in model: | |
| return None | |
| else: | |
| return "text-generation-inference" # default to tgi | |
| class Huggingface(BaseLLM): | |
| _client_session: Optional[httpx.Client] = None | |
| _aclient_session: Optional[httpx.AsyncClient] = None | |
| def __init__(self) -> None: | |
| super().__init__() | |
| def validate_environment(self, api_key, headers): | |
| default_headers = { | |
| "content-type": "application/json", | |
| } | |
| if api_key and headers is None: | |
| default_headers[ | |
| "Authorization" | |
| ] = f"Bearer {api_key}" # Huggingface Inference Endpoint default is to accept bearer tokens | |
| headers = default_headers | |
| elif headers: | |
| headers = headers | |
| else: | |
| headers = default_headers | |
| return headers | |
| def convert_to_model_response_object( | |
| self, | |
| completion_response, | |
| model_response, | |
| task, | |
| optional_params, | |
| encoding, | |
| input_text, | |
| model, | |
| ): | |
| if task == "conversational": | |
| if len(completion_response["generated_text"]) > 0: # type: ignore | |
| model_response["choices"][0]["message"][ | |
| "content" | |
| ] = completion_response[ | |
| "generated_text" | |
| ] # type: ignore | |
| elif task == "text-generation-inference": | |
| if ( | |
| not isinstance(completion_response, list) | |
| or not isinstance(completion_response[0], dict) | |
| or "generated_text" not in completion_response[0] | |
| ): | |
| raise HuggingfaceError( | |
| status_code=422, | |
| message=f"response is not in expected format - {completion_response}", | |
| ) | |
| if len(completion_response[0]["generated_text"]) > 0: | |
| model_response["choices"][0]["message"]["content"] = output_parser( | |
| completion_response[0]["generated_text"] | |
| ) | |
| ## GETTING LOGPROBS + FINISH REASON | |
| if ( | |
| "details" in completion_response[0] | |
| and "tokens" in completion_response[0]["details"] | |
| ): | |
| model_response.choices[0].finish_reason = completion_response[0][ | |
| "details" | |
| ]["finish_reason"] | |
| sum_logprob = 0 | |
| for token in completion_response[0]["details"]["tokens"]: | |
| if token["logprob"] != None: | |
| sum_logprob += token["logprob"] | |
| model_response["choices"][0]["message"]._logprob = sum_logprob | |
| if "best_of" in optional_params and optional_params["best_of"] > 1: | |
| if ( | |
| "details" in completion_response[0] | |
| and "best_of_sequences" in completion_response[0]["details"] | |
| ): | |
| choices_list = [] | |
| for idx, item in enumerate( | |
| completion_response[0]["details"]["best_of_sequences"] | |
| ): | |
| sum_logprob = 0 | |
| for token in item["tokens"]: | |
| if token["logprob"] != None: | |
| sum_logprob += token["logprob"] | |
| if len(item["generated_text"]) > 0: | |
| message_obj = Message( | |
| content=output_parser(item["generated_text"]), | |
| logprobs=sum_logprob, | |
| ) | |
| else: | |
| message_obj = Message(content=None) | |
| choice_obj = Choices( | |
| finish_reason=item["finish_reason"], | |
| index=idx + 1, | |
| message=message_obj, | |
| ) | |
| choices_list.append(choice_obj) | |
| model_response["choices"].extend(choices_list) | |
| else: | |
| if len(completion_response[0]["generated_text"]) > 0: | |
| model_response["choices"][0]["message"]["content"] = output_parser( | |
| completion_response[0]["generated_text"] | |
| ) | |
| ## CALCULATING USAGE | |
| prompt_tokens = 0 | |
| try: | |
| prompt_tokens = len( | |
| encoding.encode(input_text) | |
| ) ##[TODO] use the llama2 tokenizer here | |
| except: | |
| # this should remain non blocking we should not block a response returning if calculating usage fails | |
| pass | |
| output_text = model_response["choices"][0]["message"].get("content", "") | |
| if output_text is not None and len(output_text) > 0: | |
| completion_tokens = 0 | |
| try: | |
| completion_tokens = len( | |
| encoding.encode( | |
| model_response["choices"][0]["message"].get("content", "") | |
| ) | |
| ) ##[TODO] use the llama2 tokenizer here | |
| except: | |
| # this should remain non blocking we should not block a response returning if calculating usage fails | |
| pass | |
| else: | |
| completion_tokens = 0 | |
| model_response["created"] = int(time.time()) | |
| model_response["model"] = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| model_response.usage = usage | |
| model_response._hidden_params["original_response"] = completion_response | |
| return model_response | |
| def completion( | |
| self, | |
| model: str, | |
| messages: list, | |
| api_base: Optional[str], | |
| headers: Optional[dict], | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| timeout: float, | |
| encoding, | |
| api_key, | |
| logging_obj, | |
| custom_prompt_dict={}, | |
| acompletion: bool = False, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| super().completion() | |
| exception_mapping_worked = False | |
| try: | |
| headers = self.validate_environment(api_key, headers) | |
| task = get_hf_task_for_model(model) | |
| print_verbose(f"{model}, {task}") | |
| completion_url = "" | |
| input_text = "" | |
| if "https" in model: | |
| completion_url = model | |
| elif api_base: | |
| completion_url = api_base | |
| elif "HF_API_BASE" in os.environ: | |
| completion_url = os.getenv("HF_API_BASE", "") | |
| elif "HUGGINGFACE_API_BASE" in os.environ: | |
| completion_url = os.getenv("HUGGINGFACE_API_BASE", "") | |
| else: | |
| completion_url = f"https://api-inference.huggingface.co/models/{model}" | |
| ## Load Config | |
| config = litellm.HuggingfaceConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| ### MAP INPUT PARAMS | |
| if task == "conversational": | |
| inference_params = copy.deepcopy(optional_params) | |
| inference_params.pop("details") | |
| inference_params.pop("return_full_text") | |
| past_user_inputs = [] | |
| generated_responses = [] | |
| text = "" | |
| for message in messages: | |
| if message["role"] == "user": | |
| if text != "": | |
| past_user_inputs.append(text) | |
| text = message["content"] | |
| elif message["role"] == "assistant" or message["role"] == "system": | |
| generated_responses.append(message["content"]) | |
| data = { | |
| "inputs": { | |
| "text": text, | |
| "past_user_inputs": past_user_inputs, | |
| "generated_responses": generated_responses, | |
| }, | |
| "parameters": inference_params, | |
| } | |
| input_text = "".join(message["content"] for message in messages) | |
| elif task == "text-generation-inference": | |
| # always send "details" and "return_full_text" as params | |
| if model in custom_prompt_dict: | |
| # check if the model has a registered custom prompt | |
| model_prompt_details = custom_prompt_dict[model] | |
| prompt = custom_prompt( | |
| role_dict=model_prompt_details.get("roles", None), | |
| initial_prompt_value=model_prompt_details.get( | |
| "initial_prompt_value", "" | |
| ), | |
| final_prompt_value=model_prompt_details.get( | |
| "final_prompt_value", "" | |
| ), | |
| messages=messages, | |
| ) | |
| else: | |
| prompt = prompt_factory(model=model, messages=messages) | |
| data = { | |
| "inputs": prompt, | |
| "parameters": optional_params, | |
| "stream": True | |
| if "stream" in optional_params and optional_params["stream"] == True | |
| else False, | |
| } | |
| input_text = prompt | |
| else: | |
| # Non TGI and Conversational llms | |
| # We need this branch, it removes 'details' and 'return_full_text' from params | |
| if model in custom_prompt_dict: | |
| # check if the model has a registered custom prompt | |
| model_prompt_details = custom_prompt_dict[model] | |
| prompt = custom_prompt( | |
| role_dict=model_prompt_details.get("roles", {}), | |
| initial_prompt_value=model_prompt_details.get( | |
| "initial_prompt_value", "" | |
| ), | |
| final_prompt_value=model_prompt_details.get( | |
| "final_prompt_value", "" | |
| ), | |
| bos_token=model_prompt_details.get("bos_token", ""), | |
| eos_token=model_prompt_details.get("eos_token", ""), | |
| messages=messages, | |
| ) | |
| else: | |
| prompt = prompt_factory(model=model, messages=messages) | |
| inference_params = copy.deepcopy(optional_params) | |
| inference_params.pop("details") | |
| inference_params.pop("return_full_text") | |
| data = { | |
| "inputs": prompt, | |
| "parameters": inference_params, | |
| "stream": True | |
| if "stream" in optional_params and optional_params["stream"] == True | |
| else False, | |
| } | |
| input_text = prompt | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=input_text, | |
| api_key=api_key, | |
| additional_args={ | |
| "complete_input_dict": data, | |
| "task": task, | |
| "headers": headers, | |
| "api_base": completion_url, | |
| "acompletion": acompletion, | |
| }, | |
| ) | |
| ## COMPLETION CALL | |
| if acompletion is True: | |
| ### ASYNC STREAMING | |
| if optional_params.get("stream", False): | |
| return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout) # type: ignore | |
| else: | |
| ### ASYNC COMPLETION | |
| return self.acompletion(api_base=completion_url, data=data, headers=headers, model_response=model_response, task=task, encoding=encoding, input_text=input_text, model=model, optional_params=optional_params, timeout=timeout) # type: ignore | |
| ### SYNC STREAMING | |
| if "stream" in optional_params and optional_params["stream"] == True: | |
| response = requests.post( | |
| completion_url, | |
| headers=headers, | |
| data=json.dumps(data), | |
| stream=optional_params["stream"], | |
| ) | |
| return response.iter_lines() | |
| ### SYNC COMPLETION | |
| else: | |
| response = requests.post( | |
| completion_url, headers=headers, data=json.dumps(data) | |
| ) | |
| ## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten) | |
| is_streamed = False | |
| if ( | |
| response.__dict__["headers"].get("Content-Type", "") | |
| == "text/event-stream" | |
| ): | |
| is_streamed = True | |
| # iterate over the complete streamed response, and return the final answer | |
| if is_streamed: | |
| streamed_response = CustomStreamWrapper( | |
| completion_stream=response.iter_lines(), | |
| model=model, | |
| custom_llm_provider="huggingface", | |
| logging_obj=logging_obj, | |
| ) | |
| content = "" | |
| for chunk in streamed_response: | |
| content += chunk["choices"][0]["delta"]["content"] | |
| completion_response: List[Dict[str, Any]] = [ | |
| {"generated_text": content} | |
| ] | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input_text, | |
| api_key=api_key, | |
| original_response=completion_response, | |
| additional_args={"complete_input_dict": data, "task": task}, | |
| ) | |
| else: | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input_text, | |
| api_key=api_key, | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": data, "task": task}, | |
| ) | |
| ## RESPONSE OBJECT | |
| try: | |
| completion_response = response.json() | |
| if isinstance(completion_response, dict): | |
| completion_response = [completion_response] | |
| except: | |
| import traceback | |
| raise HuggingfaceError( | |
| message=f"Original Response received: {response.text}; Stacktrace: {traceback.format_exc()}", | |
| status_code=response.status_code, | |
| ) | |
| print_verbose(f"response: {completion_response}") | |
| if ( | |
| isinstance(completion_response, dict) | |
| and "error" in completion_response | |
| ): | |
| print_verbose(f"completion error: {completion_response['error']}") | |
| print_verbose(f"response.status_code: {response.status_code}") | |
| raise HuggingfaceError( | |
| message=completion_response["error"], | |
| status_code=response.status_code, | |
| ) | |
| return self.convert_to_model_response_object( | |
| completion_response=completion_response, | |
| model_response=model_response, | |
| task=task, | |
| optional_params=optional_params, | |
| encoding=encoding, | |
| input_text=input_text, | |
| model=model, | |
| ) | |
| except HuggingfaceError as e: | |
| exception_mapping_worked = True | |
| raise e | |
| except Exception as e: | |
| if exception_mapping_worked: | |
| raise e | |
| else: | |
| import traceback | |
| raise HuggingfaceError(status_code=500, message=traceback.format_exc()) | |
| async def acompletion( | |
| self, | |
| api_base: str, | |
| data: dict, | |
| headers: dict, | |
| model_response: ModelResponse, | |
| task: str, | |
| encoding: Any, | |
| input_text: str, | |
| model: str, | |
| optional_params: dict, | |
| timeout: float | |
| ): | |
| response = None | |
| try: | |
| async with httpx.AsyncClient(timeout=timeout) as client: | |
| response = await client.post( | |
| url=api_base, json=data, headers=headers | |
| ) | |
| response_json = response.json() | |
| if response.status_code != 200: | |
| raise HuggingfaceError( | |
| status_code=response.status_code, | |
| message=response.text, | |
| request=response.request, | |
| response=response, | |
| ) | |
| ## RESPONSE OBJECT | |
| return self.convert_to_model_response_object( | |
| completion_response=response_json, | |
| model_response=model_response, | |
| task=task, | |
| encoding=encoding, | |
| input_text=input_text, | |
| model=model, | |
| optional_params=optional_params, | |
| ) | |
| except Exception as e: | |
| if isinstance(e, httpx.TimeoutException): | |
| raise HuggingfaceError(status_code=500, message="Request Timeout Error") | |
| elif response is not None and hasattr(response, "text"): | |
| raise HuggingfaceError( | |
| status_code=500, | |
| message=f"{str(e)}\n\nOriginal Response: {response.text}", | |
| ) | |
| else: | |
| raise HuggingfaceError(status_code=500, message=f"{str(e)}") | |
| async def async_streaming( | |
| self, | |
| logging_obj, | |
| api_base: str, | |
| data: dict, | |
| headers: dict, | |
| model_response: ModelResponse, | |
| model: str, | |
| timeout: float | |
| ): | |
| async with httpx.AsyncClient(timeout=timeout) as client: | |
| response = client.stream( | |
| "POST", url=f"{api_base}", json=data, headers=headers | |
| ) | |
| async with response as r: | |
| if r.status_code != 200: | |
| raise HuggingfaceError( | |
| status_code=r.status_code, | |
| message="An error occurred while streaming", | |
| ) | |
| streamwrapper = CustomStreamWrapper( | |
| completion_stream=r.aiter_lines(), | |
| model=model, | |
| custom_llm_provider="huggingface", | |
| logging_obj=logging_obj, | |
| ) | |
| async for transformed_chunk in streamwrapper: | |
| yield transformed_chunk | |
| def embedding( | |
| self, | |
| model: str, | |
| input: list, | |
| api_key: Optional[str] = None, | |
| api_base: Optional[str] = None, | |
| logging_obj=None, | |
| model_response=None, | |
| encoding=None, | |
| ): | |
| super().embedding() | |
| headers = self.validate_environment(api_key, headers=None) | |
| # print_verbose(f"{model}, {task}") | |
| embed_url = "" | |
| if "https" in model: | |
| embed_url = model | |
| elif api_base: | |
| embed_url = api_base | |
| elif "HF_API_BASE" in os.environ: | |
| embed_url = os.getenv("HF_API_BASE", "") | |
| elif "HUGGINGFACE_API_BASE" in os.environ: | |
| embed_url = os.getenv("HUGGINGFACE_API_BASE", "") | |
| else: | |
| embed_url = f"https://api-inference.huggingface.co/models/{model}" | |
| if "sentence-transformers" in model: | |
| if len(input) == 0: | |
| raise HuggingfaceError( | |
| status_code=400, | |
| message="sentence transformers requires 2+ sentences", | |
| ) | |
| data = { | |
| "inputs": { | |
| "source_sentence": input[0], | |
| "sentences": [ | |
| "That is a happy dog", | |
| "That is a very happy person", | |
| "Today is a sunny day", | |
| ], | |
| } | |
| } | |
| else: | |
| data = {"inputs": input} # type: ignore | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=input, | |
| api_key=api_key, | |
| additional_args={ | |
| "complete_input_dict": data, | |
| "headers": headers, | |
| "api_base": embed_url, | |
| }, | |
| ) | |
| ## COMPLETION CALL | |
| response = requests.post(embed_url, headers=headers, data=json.dumps(data)) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| original_response=response, | |
| ) | |
| embeddings = response.json() | |
| if "error" in embeddings: | |
| raise HuggingfaceError(status_code=500, message=embeddings["error"]) | |
| output_data = [] | |
| if "similarities" in embeddings: | |
| for idx, embedding in embeddings["similarities"]: | |
| output_data.append( | |
| { | |
| "object": "embedding", | |
| "index": idx, | |
| "embedding": embedding, # flatten list returned from hf | |
| } | |
| ) | |
| else: | |
| for idx, embedding in enumerate(embeddings): | |
| if isinstance(embedding, float): | |
| output_data.append( | |
| { | |
| "object": "embedding", | |
| "index": idx, | |
| "embedding": embedding, # flatten list returned from hf | |
| } | |
| ) | |
| elif isinstance(embedding, list) and isinstance(embedding[0], float): | |
| output_data.append( | |
| { | |
| "object": "embedding", | |
| "index": idx, | |
| "embedding": embedding, # flatten list returned from hf | |
| } | |
| ) | |
| else: | |
| output_data.append( | |
| { | |
| "object": "embedding", | |
| "index": idx, | |
| "embedding": embedding[0][ | |
| 0 | |
| ], # flatten list returned from hf | |
| } | |
| ) | |
| model_response["object"] = "list" | |
| model_response["data"] = output_data | |
| model_response["model"] = model | |
| input_tokens = 0 | |
| for text in input: | |
| input_tokens += len(encoding.encode(text)) | |
| model_response["usage"] = { | |
| "prompt_tokens": input_tokens, | |
| "total_tokens": input_tokens, | |
| } | |
| return model_response | |