Spaces:
Paused
Paused
| import os, types | |
| import json | |
| from enum import Enum | |
| import requests | |
| import time, traceback | |
| from typing import Callable, Optional, List | |
| from litellm.utils import ModelResponse, Choices, Message, Usage | |
| import litellm | |
| class MaritalkError(Exception): | |
| def __init__(self, status_code, message): | |
| self.status_code = status_code | |
| self.message = message | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class MaritTalkConfig: | |
| """ | |
| The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters: | |
| - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1. | |
| - `model` (string): The model used for conversation. Default is 'maritalk'. | |
| - `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True. | |
| - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7. | |
| - `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95. | |
| - `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1. | |
| - `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped. | |
| """ | |
| max_tokens: Optional[int] = None | |
| model: Optional[str] = None | |
| do_sample: Optional[bool] = None | |
| temperature: Optional[float] = None | |
| top_p: Optional[float] = None | |
| repetition_penalty: Optional[float] = None | |
| stopping_tokens: Optional[List[str]] = None | |
| def __init__( | |
| self, | |
| max_tokens: Optional[int] = None, | |
| model: Optional[str] = None, | |
| do_sample: Optional[bool] = None, | |
| temperature: Optional[float] = None, | |
| top_p: Optional[float] = None, | |
| repetition_penalty: Optional[float] = None, | |
| stopping_tokens: Optional[List[str]] = None, | |
| ) -> None: | |
| locals_ = locals() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| def validate_environment(api_key): | |
| headers = { | |
| "accept": "application/json", | |
| "content-type": "application/json", | |
| } | |
| if api_key: | |
| headers["Authorization"] = f"Key {api_key}" | |
| return headers | |
| def completion( | |
| model: str, | |
| messages: list, | |
| api_base: str, | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| api_key, | |
| logging_obj, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| headers = validate_environment(api_key) | |
| completion_url = api_base | |
| model = model | |
| ## Load Config | |
| config = litellm.MaritTalkConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > maritalk_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| data = { | |
| "messages": messages, | |
| **optional_params, | |
| } | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=messages, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| ## COMPLETION CALL | |
| response = requests.post( | |
| completion_url, | |
| headers=headers, | |
| data=json.dumps(data), | |
| stream=optional_params["stream"] if "stream" in optional_params else False, | |
| ) | |
| if "stream" in optional_params and optional_params["stream"] == True: | |
| return response.iter_lines() | |
| else: | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=messages, | |
| api_key=api_key, | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response.text}") | |
| ## RESPONSE OBJECT | |
| completion_response = response.json() | |
| if "error" in completion_response: | |
| raise MaritalkError( | |
| message=completion_response["error"], | |
| status_code=response.status_code, | |
| ) | |
| else: | |
| try: | |
| if len(completion_response["answer"]) > 0: | |
| model_response["choices"][0]["message"][ | |
| "content" | |
| ] = completion_response["answer"] | |
| except Exception as e: | |
| raise MaritalkError( | |
| message=response.text, status_code=response.status_code | |
| ) | |
| ## CALCULATING USAGE | |
| prompt = "".join(m["content"] for m in messages) | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
| ) | |
| model_response["created"] = int(time.time()) | |
| model_response["model"] = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| model_response.usage = usage | |
| return model_response | |
| def embedding( | |
| model: str, | |
| input: list, | |
| api_key: Optional[str] = None, | |
| logging_obj=None, | |
| model_response=None, | |
| encoding=None, | |
| ): | |
| pass | |