Spaces:
Paused
Paused
| import os, types | |
| from enum import Enum | |
| import json | |
| import requests | |
| import time | |
| from typing import Callable, Optional, Any | |
| import litellm | |
| from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage | |
| import sys | |
| from copy import deepcopy | |
| import httpx | |
| from .prompt_templates.factory import prompt_factory, custom_prompt | |
| class SagemakerError(Exception): | |
| def __init__(self, status_code, message): | |
| self.status_code = status_code | |
| self.message = message | |
| self.request = httpx.Request( | |
| method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker" | |
| ) | |
| self.response = httpx.Response(status_code=status_code, request=self.request) | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class SagemakerConfig: | |
| """ | |
| Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb | |
| """ | |
| max_new_tokens: Optional[int] = None | |
| top_p: Optional[float] = None | |
| temperature: Optional[float] = None | |
| return_full_text: Optional[bool] = None | |
| def __init__( | |
| self, | |
| max_new_tokens: Optional[int] = None, | |
| top_p: Optional[float] = None, | |
| temperature: Optional[float] = None, | |
| return_full_text: Optional[bool] = None, | |
| ) -> None: | |
| locals_ = locals() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| """ | |
| SAGEMAKER AUTH Keys/Vars | |
| os.environ['AWS_ACCESS_KEY_ID'] = "" | |
| os.environ['AWS_SECRET_ACCESS_KEY'] = "" | |
| """ | |
| # set os.environ['AWS_REGION_NAME'] = <your-region_name> | |
| def completion( | |
| model: str, | |
| messages: list, | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| logging_obj, | |
| custom_prompt_dict={}, | |
| hf_model_name=None, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| import boto3 | |
| # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
| aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
| aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
| aws_region_name = optional_params.pop("aws_region_name", None) | |
| if aws_access_key_id != None: | |
| # uses auth params passed to completion | |
| # aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
| client = boto3.client( | |
| service_name="sagemaker-runtime", | |
| aws_access_key_id=aws_access_key_id, | |
| aws_secret_access_key=aws_secret_access_key, | |
| region_name=aws_region_name, | |
| ) | |
| else: | |
| # aws_access_key_id is None, assume user is trying to auth using env variables | |
| # boto3 automaticaly reads env variables | |
| # we need to read region name from env | |
| # I assume majority of users use .env for auth | |
| region_name = ( | |
| get_secret("AWS_REGION_NAME") | |
| or "us-west-2" # default to us-west-2 if user not specified | |
| ) | |
| client = boto3.client( | |
| service_name="sagemaker-runtime", | |
| region_name=region_name, | |
| ) | |
| # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
| inference_params = deepcopy(optional_params) | |
| inference_params.pop("stream", None) | |
| ## Load Config | |
| config = litellm.SagemakerConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in inference_params | |
| ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
| inference_params[k] = v | |
| model = model | |
| if model in custom_prompt_dict: | |
| # check if the model has a registered custom prompt | |
| model_prompt_details = custom_prompt_dict[model] | |
| prompt = custom_prompt( | |
| role_dict=model_prompt_details.get("roles", None), | |
| initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), | |
| final_prompt_value=model_prompt_details.get("final_prompt_value", ""), | |
| messages=messages, | |
| ) | |
| else: | |
| if hf_model_name is None: | |
| if "llama-2" in model.lower(): # llama-2 model | |
| if "chat" in model.lower(): # apply llama2 chat template | |
| hf_model_name = "meta-llama/Llama-2-7b-chat-hf" | |
| else: # apply regular llama2 template | |
| hf_model_name = "meta-llama/Llama-2-7b" | |
| hf_model_name = ( | |
| hf_model_name or model | |
| ) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt) | |
| prompt = prompt_factory(model=hf_model_name, messages=messages) | |
| data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode( | |
| "utf-8" | |
| ) | |
| ## LOGGING | |
| request_str = f""" | |
| response = client.invoke_endpoint( | |
| EndpointName={model}, | |
| ContentType="application/json", | |
| Body={data}, | |
| CustomAttributes="accept_eula=true", | |
| ) | |
| """ # type: ignore | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key="", | |
| additional_args={ | |
| "complete_input_dict": data, | |
| "request_str": request_str, | |
| "hf_model_name": hf_model_name, | |
| }, | |
| ) | |
| ## COMPLETION CALL | |
| try: | |
| response = client.invoke_endpoint( | |
| EndpointName=model, | |
| ContentType="application/json", | |
| Body=data, | |
| CustomAttributes="accept_eula=true", | |
| ) | |
| except Exception as e: | |
| raise SagemakerError(status_code=500, message=f"{str(e)}") | |
| response = response["Body"].read().decode("utf8") | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key="", | |
| original_response=response, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response}") | |
| ## RESPONSE OBJECT | |
| completion_response = json.loads(response) | |
| try: | |
| completion_response_choices = completion_response[0] | |
| completion_output = "" | |
| if "generation" in completion_response_choices: | |
| completion_output += completion_response_choices["generation"] | |
| elif "generated_text" in completion_response_choices: | |
| completion_output += completion_response_choices["generated_text"] | |
| # check if the prompt template is part of output, if so - filter it out | |
| if completion_output.startswith(prompt) and "<s>" in prompt: | |
| completion_output = completion_output.replace(prompt, "", 1) | |
| model_response["choices"][0]["message"]["content"] = completion_output | |
| except: | |
| raise SagemakerError( | |
| message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", | |
| status_code=500, | |
| ) | |
| ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
| ) | |
| model_response["created"] = int(time.time()) | |
| model_response["model"] = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| model_response.usage = usage | |
| return model_response | |
| # async def acompletion( | |
| # client: Any, | |
| # model_response: ModelResponse, | |
| # model: str, | |
| # logging_obj: Any, | |
| # data: dict, | |
| # hf_model_name: str, | |
| # ): | |
| # """ | |
| # Use boto3 create_invocation_async endpoint | |
| # """ | |
| # ## LOGGING | |
| # request_str = f""" | |
| # response = client.invoke_endpoint( | |
| # EndpointName={model}, | |
| # ContentType="application/json", | |
| # Body={data}, | |
| # CustomAttributes="accept_eula=true", | |
| # ) | |
| # """ # type: ignore | |
| # logging_obj.pre_call( | |
| # input=data["prompt"], | |
| # api_key="", | |
| # additional_args={ | |
| # "complete_input_dict": data, | |
| # "request_str": request_str, | |
| # "hf_model_name": hf_model_name, | |
| # }, | |
| # ) | |
| # ## COMPLETION CALL | |
| # try: | |
| # response = client.invoke_endpoint( | |
| # EndpointName=model, | |
| # ContentType="application/json", | |
| # Body=data, | |
| # CustomAttributes="accept_eula=true", | |
| # ) | |
| # except Exception as e: | |
| # raise SagemakerError(status_code=500, message=f"{str(e)}") | |
| def embedding( | |
| model: str, | |
| input: list, | |
| model_response: EmbeddingResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| logging_obj, | |
| custom_prompt_dict={}, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| """ | |
| Supports Huggingface Jumpstart embeddings like GPT-6B | |
| """ | |
| ### BOTO3 INIT | |
| import boto3 | |
| # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
| aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
| aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
| aws_region_name = optional_params.pop("aws_region_name", None) | |
| if aws_access_key_id != None: | |
| # uses auth params passed to completion | |
| # aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
| client = boto3.client( | |
| service_name="sagemaker-runtime", | |
| aws_access_key_id=aws_access_key_id, | |
| aws_secret_access_key=aws_secret_access_key, | |
| region_name=aws_region_name, | |
| ) | |
| else: | |
| # aws_access_key_id is None, assume user is trying to auth using env variables | |
| # boto3 automaticaly reads env variables | |
| # we need to read region name from env | |
| # I assume majority of users use .env for auth | |
| region_name = ( | |
| get_secret("AWS_REGION_NAME") | |
| or "us-west-2" # default to us-west-2 if user not specified | |
| ) | |
| client = boto3.client( | |
| service_name="sagemaker-runtime", | |
| region_name=region_name, | |
| ) | |
| # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
| inference_params = deepcopy(optional_params) | |
| inference_params.pop("stream", None) | |
| ## Load Config | |
| config = litellm.SagemakerConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in inference_params | |
| ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
| inference_params[k] = v | |
| #### HF EMBEDDING LOGIC | |
| data = json.dumps({"text_inputs": input}).encode("utf-8") | |
| ## LOGGING | |
| request_str = f""" | |
| response = client.invoke_endpoint( | |
| EndpointName={model}, | |
| ContentType="application/json", | |
| Body={data}, | |
| CustomAttributes="accept_eula=true", | |
| )""" # type: ignore | |
| logging_obj.pre_call( | |
| input=input, | |
| api_key="", | |
| additional_args={"complete_input_dict": data, "request_str": request_str}, | |
| ) | |
| ## EMBEDDING CALL | |
| try: | |
| response = client.invoke_endpoint( | |
| EndpointName=model, | |
| ContentType="application/json", | |
| Body=data, | |
| CustomAttributes="accept_eula=true", | |
| ) | |
| except Exception as e: | |
| raise SagemakerError(status_code=500, message=f"{str(e)}") | |
| response = json.loads(response["Body"].read().decode("utf8")) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input, | |
| api_key="", | |
| original_response=response, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response}") | |
| if "embedding" not in response: | |
| raise SagemakerError(status_code=500, message="embedding not found in response") | |
| embeddings = response["embedding"] | |
| if not isinstance(embeddings, list): | |
| raise SagemakerError( | |
| status_code=422, message=f"Response not in expected format - {embeddings}" | |
| ) | |
| output_data = [] | |
| for idx, embedding in enumerate(embeddings): | |
| output_data.append( | |
| {"object": "embedding", "index": idx, "embedding": embedding} | |
| ) | |
| model_response["object"] = "list" | |
| model_response["data"] = output_data | |
| model_response["model"] = model | |
| input_tokens = 0 | |
| for text in input: | |
| input_tokens += len(encoding.encode(text)) | |
| model_response["usage"] = Usage( | |
| prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens | |
| ) | |
| return model_response | |