Spaces:
Paused
Paused
| import os, types | |
| import json | |
| from enum import Enum | |
| import requests | |
| import time, traceback | |
| from typing import Callable, Optional | |
| from litellm.utils import ModelResponse, Choices, Message, Usage | |
| import litellm | |
| import httpx | |
| class CohereError(Exception): | |
| def __init__(self, status_code, message): | |
| self.status_code = status_code | |
| self.message = message | |
| self.request = httpx.Request( | |
| method="POST", url="https://api.cohere.ai/v1/generate" | |
| ) | |
| self.response = httpx.Response(status_code=status_code, request=self.request) | |
| super().__init__( | |
| self.message | |
| ) # Call the base class constructor with the parameters it needs | |
| class CohereConfig: | |
| """ | |
| Reference: https://docs.cohere.com/reference/generate | |
| The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters: | |
| - `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5. | |
| - `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20. | |
| - `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END. | |
| - `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75. | |
| - `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc. | |
| - `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text. | |
| - `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text. | |
| - `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0. | |
| - `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0. | |
| - `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens. | |
| - `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared. | |
| - `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE. | |
| - `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233} | |
| """ | |
| num_generations: Optional[int] = None | |
| max_tokens: Optional[int] = None | |
| truncate: Optional[str] = None | |
| temperature: Optional[int] = None | |
| preset: Optional[str] = None | |
| end_sequences: Optional[list] = None | |
| stop_sequences: Optional[list] = None | |
| k: Optional[int] = None | |
| p: Optional[int] = None | |
| frequency_penalty: Optional[int] = None | |
| presence_penalty: Optional[int] = None | |
| return_likelihoods: Optional[str] = None | |
| logit_bias: Optional[dict] = None | |
| def __init__( | |
| self, | |
| num_generations: Optional[int] = None, | |
| max_tokens: Optional[int] = None, | |
| truncate: Optional[str] = None, | |
| temperature: Optional[int] = None, | |
| preset: Optional[str] = None, | |
| end_sequences: Optional[list] = None, | |
| stop_sequences: Optional[list] = None, | |
| k: Optional[int] = None, | |
| p: Optional[int] = None, | |
| frequency_penalty: Optional[int] = None, | |
| presence_penalty: Optional[int] = None, | |
| return_likelihoods: Optional[str] = None, | |
| logit_bias: Optional[dict] = None, | |
| ) -> None: | |
| locals_ = locals() | |
| for key, value in locals_.items(): | |
| if key != "self" and value is not None: | |
| setattr(self.__class__, key, value) | |
| def get_config(cls): | |
| return { | |
| k: v | |
| for k, v in cls.__dict__.items() | |
| if not k.startswith("__") | |
| and not isinstance( | |
| v, | |
| ( | |
| types.FunctionType, | |
| types.BuiltinFunctionType, | |
| classmethod, | |
| staticmethod, | |
| ), | |
| ) | |
| and v is not None | |
| } | |
| def validate_environment(api_key): | |
| headers = { | |
| "accept": "application/json", | |
| "content-type": "application/json", | |
| } | |
| if api_key: | |
| headers["Authorization"] = f"Bearer {api_key}" | |
| return headers | |
| def completion( | |
| model: str, | |
| messages: list, | |
| api_base: str, | |
| model_response: ModelResponse, | |
| print_verbose: Callable, | |
| encoding, | |
| api_key, | |
| logging_obj, | |
| optional_params=None, | |
| litellm_params=None, | |
| logger_fn=None, | |
| ): | |
| headers = validate_environment(api_key) | |
| completion_url = api_base | |
| model = model | |
| prompt = " ".join(message["content"] for message in messages) | |
| ## Load Config | |
| config = litellm.CohereConfig.get_config() | |
| for k, v in config.items(): | |
| if ( | |
| k not in optional_params | |
| ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in | |
| optional_params[k] = v | |
| data = { | |
| "model": model, | |
| "prompt": prompt, | |
| **optional_params, | |
| } | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=prompt, | |
| api_key=api_key, | |
| additional_args={ | |
| "complete_input_dict": data, | |
| "headers": headers, | |
| "api_base": completion_url, | |
| }, | |
| ) | |
| ## COMPLETION CALL | |
| response = requests.post( | |
| completion_url, | |
| headers=headers, | |
| data=json.dumps(data), | |
| stream=optional_params["stream"] if "stream" in optional_params else False, | |
| ) | |
| ## error handling for cohere calls | |
| if response.status_code != 200: | |
| raise CohereError(message=response.text, status_code=response.status_code) | |
| if "stream" in optional_params and optional_params["stream"] == True: | |
| return response.iter_lines() | |
| else: | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=prompt, | |
| api_key=api_key, | |
| original_response=response.text, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| print_verbose(f"raw model_response: {response.text}") | |
| ## RESPONSE OBJECT | |
| completion_response = response.json() | |
| if "error" in completion_response: | |
| raise CohereError( | |
| message=completion_response["error"], | |
| status_code=response.status_code, | |
| ) | |
| else: | |
| try: | |
| choices_list = [] | |
| for idx, item in enumerate(completion_response["generations"]): | |
| if len(item["text"]) > 0: | |
| message_obj = Message(content=item["text"]) | |
| else: | |
| message_obj = Message(content=None) | |
| choice_obj = Choices( | |
| finish_reason=item["finish_reason"], | |
| index=idx + 1, | |
| message=message_obj, | |
| ) | |
| choices_list.append(choice_obj) | |
| model_response["choices"] = choices_list | |
| except Exception as e: | |
| raise CohereError( | |
| message=response.text, status_code=response.status_code | |
| ) | |
| ## CALCULATING USAGE | |
| prompt_tokens = len(encoding.encode(prompt)) | |
| completion_tokens = len( | |
| encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
| ) | |
| model_response["created"] = int(time.time()) | |
| model_response["model"] = model | |
| usage = Usage( | |
| prompt_tokens=prompt_tokens, | |
| completion_tokens=completion_tokens, | |
| total_tokens=prompt_tokens + completion_tokens, | |
| ) | |
| model_response.usage = usage | |
| return model_response | |
| def embedding( | |
| model: str, | |
| input: list, | |
| api_key: Optional[str] = None, | |
| logging_obj=None, | |
| model_response=None, | |
| encoding=None, | |
| optional_params=None, | |
| ): | |
| headers = validate_environment(api_key) | |
| embed_url = "https://api.cohere.ai/v1/embed" | |
| model = model | |
| data = {"model": model, "texts": input, **optional_params} | |
| if "3" in model and "input_type" not in data: | |
| # cohere v3 embedding models require input_type, if no input_type is provided, default to "search_document" | |
| data["input_type"] = "search_document" | |
| ## LOGGING | |
| logging_obj.pre_call( | |
| input=input, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| ) | |
| ## COMPLETION CALL | |
| response = requests.post(embed_url, headers=headers, data=json.dumps(data)) | |
| ## LOGGING | |
| logging_obj.post_call( | |
| input=input, | |
| api_key=api_key, | |
| additional_args={"complete_input_dict": data}, | |
| original_response=response, | |
| ) | |
| """ | |
| response | |
| { | |
| 'object': "list", | |
| 'data': [ | |
| ] | |
| 'model', | |
| 'usage' | |
| } | |
| """ | |
| if response.status_code != 200: | |
| raise CohereError(message=response.text, status_code=response.status_code) | |
| embeddings = response.json()["embeddings"] | |
| output_data = [] | |
| for idx, embedding in enumerate(embeddings): | |
| output_data.append( | |
| {"object": "embedding", "index": idx, "embedding": embedding} | |
| ) | |
| model_response["object"] = "list" | |
| model_response["data"] = output_data | |
| model_response["model"] = model | |
| input_tokens = 0 | |
| for text in input: | |
| input_tokens += len(encoding.encode(text)) | |
| model_response["usage"] = { | |
| "prompt_tokens": input_tokens, | |
| "total_tokens": input_tokens, | |
| } | |
| return model_response | |