Spaces:
Paused
Paused
| ### What this tests #### | |
| ## This test asserts the type of data passed into each method of the custom callback handler | |
| import sys, os, time, inspect, asyncio, traceback | |
| from datetime import datetime | |
| import pytest | |
| sys.path.insert(0, os.path.abspath("../..")) | |
| from typing import Optional, Literal, List | |
| from litellm import Router, Cache | |
| import litellm | |
| from litellm.integrations.custom_logger import CustomLogger | |
| # Test Scenarios (test across completion, streaming, embedding) | |
| ## 1: Pre-API-Call | |
| ## 2: Post-API-Call | |
| ## 3: On LiteLLM Call success | |
| ## 4: On LiteLLM Call failure | |
| ## fallbacks | |
| ## retries | |
| # Test cases | |
| ## 1. Simple Azure OpenAI acompletion + streaming call | |
| ## 2. Simple Azure OpenAI aembedding call | |
| ## 3. Azure OpenAI acompletion + streaming call with retries | |
| ## 4. Azure OpenAI aembedding call with retries | |
| ## 5. Azure OpenAI acompletion + streaming call with fallbacks | |
| ## 6. Azure OpenAI aembedding call with fallbacks | |
| # Test interfaces | |
| ## 1. router.completion() + router.embeddings() | |
| ## 2. proxy.completions + proxy.embeddings | |
| class CompletionCustomHandler( | |
| CustomLogger | |
| ): # https://docs.litellm.ai/docs/observability/custom_callback#callback-class | |
| """ | |
| The set of expected inputs to a custom handler for a | |
| """ | |
| # Class variables or attributes | |
| def __init__(self): | |
| self.errors = [] | |
| self.states: Optional[ | |
| List[ | |
| Literal[ | |
| "sync_pre_api_call", | |
| "async_pre_api_call", | |
| "post_api_call", | |
| "sync_stream", | |
| "async_stream", | |
| "sync_success", | |
| "async_success", | |
| "sync_failure", | |
| "async_failure", | |
| ] | |
| ] | |
| ] = [] | |
| def log_pre_api_call(self, model, messages, kwargs): | |
| try: | |
| print(f"received kwargs in pre-input: {kwargs}") | |
| self.states.append("sync_pre_api_call") | |
| ## MODEL | |
| assert isinstance(model, str) | |
| ## MESSAGES | |
| assert isinstance(messages, list) | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| ### ROUTER-SPECIFIC KWARGS | |
| assert isinstance(kwargs["litellm_params"]["metadata"], dict) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str) | |
| assert isinstance(kwargs["litellm_params"]["model_info"], dict) | |
| assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str) | |
| assert isinstance( | |
| kwargs["litellm_params"]["proxy_server_request"], (str, type(None)) | |
| ) | |
| assert isinstance( | |
| kwargs["litellm_params"]["preset_cache_key"], (str, type(None)) | |
| ) | |
| assert isinstance(kwargs["litellm_params"]["stream_response"], dict) | |
| except Exception as e: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| def log_post_api_call(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| self.states.append("post_api_call") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert end_time == None | |
| ## RESPONSE OBJECT | |
| assert response_obj == None | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert isinstance(kwargs["input"], (list, dict, str)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert ( | |
| isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| or inspect.iscoroutine(kwargs["original_response"]) | |
| or inspect.isasyncgen(kwargs["original_response"]) | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| ### ROUTER-SPECIFIC KWARGS | |
| assert isinstance(kwargs["litellm_params"]["metadata"], dict) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str) | |
| assert isinstance(kwargs["litellm_params"]["model_info"], dict) | |
| assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str) | |
| assert isinstance( | |
| kwargs["litellm_params"]["proxy_server_request"], (str, type(None)) | |
| ) | |
| assert isinstance( | |
| kwargs["litellm_params"]["preset_cache_key"], (str, type(None)) | |
| ) | |
| assert isinstance(kwargs["litellm_params"]["stream_response"], dict) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| async def async_log_stream_event(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| self.states.append("async_stream") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert isinstance(end_time, datetime) | |
| ## RESPONSE OBJECT | |
| assert isinstance(response_obj, litellm.ModelResponse) | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) and isinstance( | |
| kwargs["messages"][0], dict | |
| ) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert ( | |
| isinstance(kwargs["input"], list) | |
| and isinstance(kwargs["input"][0], dict) | |
| ) or isinstance(kwargs["input"], (dict, str)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert ( | |
| isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| or inspect.isasyncgen(kwargs["original_response"]) | |
| or inspect.iscoroutine(kwargs["original_response"]) | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| def log_success_event(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| self.states.append("sync_success") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert isinstance(end_time, datetime) | |
| ## RESPONSE OBJECT | |
| assert isinstance(response_obj, litellm.ModelResponse) | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) and isinstance( | |
| kwargs["messages"][0], dict | |
| ) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert ( | |
| isinstance(kwargs["input"], list) | |
| and isinstance(kwargs["input"][0], dict) | |
| ) or isinstance(kwargs["input"], (dict, str)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| assert kwargs["cache_hit"] is None or isinstance(kwargs["cache_hit"], bool) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| def log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| self.states.append("sync_failure") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert isinstance(end_time, datetime) | |
| ## RESPONSE OBJECT | |
| assert response_obj == None | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) and isinstance( | |
| kwargs["messages"][0], dict | |
| ) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert ( | |
| isinstance(kwargs["input"], list) | |
| and isinstance(kwargs["input"][0], dict) | |
| ) or isinstance(kwargs["input"], (dict, str)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert ( | |
| isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| or kwargs["original_response"] == None | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| async def async_log_pre_api_call(self, model, messages, kwargs): | |
| try: | |
| """ | |
| No-op. | |
| Not implemented yet. | |
| """ | |
| pass | |
| except Exception as e: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| self.states.append("async_success") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert isinstance(end_time, datetime) | |
| ## RESPONSE OBJECT | |
| assert isinstance( | |
| response_obj, (litellm.ModelResponse, litellm.EmbeddingResponse) | |
| ) | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert isinstance(kwargs["input"], (list, dict, str)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert ( | |
| isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| or inspect.isasyncgen(kwargs["original_response"]) | |
| or inspect.iscoroutine(kwargs["original_response"]) | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| assert kwargs["cache_hit"] is None or isinstance(kwargs["cache_hit"], bool) | |
| ### ROUTER-SPECIFIC KWARGS | |
| assert isinstance(kwargs["litellm_params"]["metadata"], dict) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["model_group"], str) | |
| assert isinstance(kwargs["litellm_params"]["metadata"]["deployment"], str) | |
| assert isinstance(kwargs["litellm_params"]["model_info"], dict) | |
| assert isinstance(kwargs["litellm_params"]["model_info"]["id"], str) | |
| assert isinstance( | |
| kwargs["litellm_params"]["proxy_server_request"], (str, type(None)) | |
| ) | |
| assert isinstance( | |
| kwargs["litellm_params"]["preset_cache_key"], (str, type(None)) | |
| ) | |
| assert isinstance(kwargs["litellm_params"]["stream_response"], dict) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time): | |
| try: | |
| print(f"received original response: {kwargs['original_response']}") | |
| self.states.append("async_failure") | |
| ## START TIME | |
| assert isinstance(start_time, datetime) | |
| ## END TIME | |
| assert isinstance(end_time, datetime) | |
| ## RESPONSE OBJECT | |
| assert response_obj == None | |
| ## KWARGS | |
| assert isinstance(kwargs["model"], str) | |
| assert isinstance(kwargs["messages"], list) | |
| assert isinstance(kwargs["optional_params"], dict) | |
| assert isinstance(kwargs["litellm_params"], dict) | |
| assert isinstance(kwargs["start_time"], (datetime, type(None))) | |
| assert isinstance(kwargs["stream"], bool) | |
| assert isinstance(kwargs["user"], (str, type(None))) | |
| assert isinstance(kwargs["input"], (list, str, dict)) | |
| assert isinstance(kwargs["api_key"], (str, type(None))) | |
| assert ( | |
| isinstance( | |
| kwargs["original_response"], (str, litellm.CustomStreamWrapper) | |
| ) | |
| or inspect.isasyncgen(kwargs["original_response"]) | |
| or inspect.iscoroutine(kwargs["original_response"]) | |
| or kwargs["original_response"] == None | |
| ) | |
| assert isinstance(kwargs["additional_args"], (dict, type(None))) | |
| assert isinstance(kwargs["log_event_type"], str) | |
| except: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| self.errors.append(traceback.format_exc()) | |
| # Simple Azure OpenAI call | |
| ## COMPLETION | |
| async def test_async_chat_azure(): | |
| try: | |
| customHandler_completion_azure_router = CompletionCustomHandler() | |
| customHandler_streaming_azure_router = CompletionCustomHandler() | |
| customHandler_failure = CompletionCustomHandler() | |
| litellm.callbacks = [customHandler_completion_azure_router] | |
| model_list = [ | |
| { | |
| "model_name": "gpt-3.5-turbo", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/chatgpt-v-2", | |
| "api_key": os.getenv("AZURE_API_KEY"), | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| router = Router(model_list=model_list) # type: ignore | |
| response = await router.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": "Hi ๐ - i'm openai"}], | |
| ) | |
| await asyncio.sleep(2) | |
| assert len(customHandler_completion_azure_router.errors) == 0 | |
| assert ( | |
| len(customHandler_completion_azure_router.states) == 3 | |
| ) # pre, post, success | |
| # streaming | |
| litellm.callbacks = [customHandler_streaming_azure_router] | |
| router2 = Router(model_list=model_list) # type: ignore | |
| response = await router2.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": "Hi ๐ - i'm openai"}], | |
| stream=True, | |
| ) | |
| async for chunk in response: | |
| print(f"async azure router chunk: {chunk}") | |
| continue | |
| await asyncio.sleep(1) | |
| print(f"customHandler.states: {customHandler_streaming_azure_router.states}") | |
| assert len(customHandler_streaming_azure_router.errors) == 0 | |
| assert ( | |
| len(customHandler_streaming_azure_router.states) >= 4 | |
| ) # pre, post, stream (multiple times), success | |
| # failure | |
| model_list = [ | |
| { | |
| "model_name": "gpt-3.5-turbo", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/chatgpt-v-2", | |
| "api_key": "my-bad-key", | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| litellm.callbacks = [customHandler_failure] | |
| router3 = Router(model_list=model_list) # type: ignore | |
| try: | |
| response = await router3.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": "Hi ๐ - i'm openai"}], | |
| ) | |
| print(f"response in router3 acompletion: {response}") | |
| except: | |
| pass | |
| await asyncio.sleep(1) | |
| print(f"customHandler.states: {customHandler_failure.states}") | |
| assert len(customHandler_failure.errors) == 0 | |
| assert len(customHandler_failure.states) == 3 # pre, post, failure | |
| assert "async_failure" in customHandler_failure.states | |
| except Exception as e: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| pytest.fail(f"An exception occurred - {str(e)}") | |
| # asyncio.run(test_async_chat_azure()) | |
| ## EMBEDDING | |
| async def test_async_embedding_azure(): | |
| try: | |
| customHandler = CompletionCustomHandler() | |
| customHandler_failure = CompletionCustomHandler() | |
| litellm.callbacks = [customHandler] | |
| model_list = [ | |
| { | |
| "model_name": "azure-embedding-model", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/azure-embedding-model", | |
| "api_key": os.getenv("AZURE_API_KEY"), | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| router = Router(model_list=model_list) # type: ignore | |
| response = await router.aembedding( | |
| model="azure-embedding-model", input=["hello from litellm!"] | |
| ) | |
| await asyncio.sleep(2) | |
| assert len(customHandler.errors) == 0 | |
| assert len(customHandler.states) == 3 # pre, post, success | |
| # failure | |
| model_list = [ | |
| { | |
| "model_name": "azure-embedding-model", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/azure-embedding-model", | |
| "api_key": "my-bad-key", | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| litellm.callbacks = [customHandler_failure] | |
| router3 = Router(model_list=model_list) # type: ignore | |
| try: | |
| response = await router3.aembedding( | |
| model="azure-embedding-model", input=["hello from litellm!"] | |
| ) | |
| print(f"response in router3 aembedding: {response}") | |
| except: | |
| pass | |
| await asyncio.sleep(1) | |
| print(f"customHandler.states: {customHandler_failure.states}") | |
| assert len(customHandler_failure.errors) == 0 | |
| assert len(customHandler_failure.states) == 3 # pre, post, failure | |
| assert "async_failure" in customHandler_failure.states | |
| except Exception as e: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| pytest.fail(f"An exception occurred - {str(e)}") | |
| # asyncio.run(test_async_embedding_azure()) | |
| # Azure OpenAI call w/ Fallbacks | |
| ## COMPLETION | |
| async def test_async_chat_azure_with_fallbacks(): | |
| try: | |
| customHandler_fallbacks = CompletionCustomHandler() | |
| litellm.callbacks = [customHandler_fallbacks] | |
| # with fallbacks | |
| model_list = [ | |
| { | |
| "model_name": "gpt-3.5-turbo", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/chatgpt-v-2", | |
| "api_key": "my-bad-key", | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| { | |
| "model_name": "gpt-3.5-turbo-16k", | |
| "litellm_params": { | |
| "model": "gpt-3.5-turbo-16k", | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| router = Router(model_list=model_list, fallbacks=[{"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}]) # type: ignore | |
| response = await router.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": "Hi ๐ - i'm openai"}], | |
| ) | |
| await asyncio.sleep(2) | |
| print(f"customHandler_fallbacks.states: {customHandler_fallbacks.states}") | |
| assert len(customHandler_fallbacks.errors) == 0 | |
| assert ( | |
| len(customHandler_fallbacks.states) == 6 | |
| ) # pre, post, failure, pre, post, success | |
| litellm.callbacks = [] | |
| except Exception as e: | |
| print(f"Assertion Error: {traceback.format_exc()}") | |
| pytest.fail(f"An exception occurred - {str(e)}") | |
| # asyncio.run(test_async_chat_azure_with_fallbacks()) | |
| # CACHING | |
| ## Test Azure - completion, embedding | |
| async def test_async_completion_azure_caching(): | |
| customHandler_caching = CompletionCustomHandler() | |
| litellm.cache = Cache( | |
| type="redis", | |
| host=os.environ["REDIS_HOST"], | |
| port=os.environ["REDIS_PORT"], | |
| password=os.environ["REDIS_PASSWORD"], | |
| ) | |
| litellm.callbacks = [customHandler_caching] | |
| unique_time = time.time() | |
| model_list = [ | |
| { | |
| "model_name": "gpt-3.5-turbo", # openai model name | |
| "litellm_params": { # params for litellm completion/embedding call | |
| "model": "azure/chatgpt-v-2", | |
| "api_key": os.getenv("AZURE_API_KEY"), | |
| "api_version": os.getenv("AZURE_API_VERSION"), | |
| "api_base": os.getenv("AZURE_API_BASE"), | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| { | |
| "model_name": "gpt-3.5-turbo-16k", | |
| "litellm_params": { | |
| "model": "gpt-3.5-turbo-16k", | |
| }, | |
| "tpm": 240000, | |
| "rpm": 1800, | |
| }, | |
| ] | |
| router = Router(model_list=model_list) # type: ignore | |
| response1 = await router.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": f"Hi ๐ - i'm async azure {unique_time}"}], | |
| caching=True, | |
| ) | |
| await asyncio.sleep(1) | |
| print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}") | |
| response2 = await router.acompletion( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": f"Hi ๐ - i'm async azure {unique_time}"}], | |
| caching=True, | |
| ) | |
| await asyncio.sleep(1) # success callbacks are done in parallel | |
| print( | |
| f"customHandler_caching.states post-cache hit: {customHandler_caching.states}" | |
| ) | |
| assert len(customHandler_caching.errors) == 0 | |
| assert len(customHandler_caching.states) == 4 # pre, post, success, success | |