Spaces:
Runtime error
Runtime error
Update app.py as per #1
Browse files
app.py
CHANGED
|
@@ -2,11 +2,70 @@ import numpy as np
|
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import from_pretrained_keras
|
| 4 |
|
| 5 |
-
def
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
model = from_pretrained_keras('jalFaizy/3D_CNN')
|
| 12 |
|
|
@@ -18,7 +77,7 @@ iface = gr.Interface(
|
|
| 18 |
filepath,
|
| 19 |
text,
|
| 20 |
title='3D CNN for CT scans',
|
| 21 |
-
examples=['example_1_normal.
|
| 22 |
)
|
| 23 |
|
| 24 |
iface.launch()
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from huggingface_hub import from_pretrained_keras
|
| 4 |
|
| 5 |
+
def read_nifti_file(filepath):
|
| 6 |
+
"""Read and load volume"""
|
| 7 |
+
# Read file
|
| 8 |
+
scan = nib.load(filepath)
|
| 9 |
+
# Get raw data
|
| 10 |
+
scan = scan.get_fdata()
|
| 11 |
+
return scan
|
| 12 |
+
|
| 13 |
+
def normalize(volume):
|
| 14 |
+
"""Normalize the volume"""
|
| 15 |
+
min = -1000
|
| 16 |
+
max = 400
|
| 17 |
+
volume[volume < min] = min
|
| 18 |
+
volume[volume > max] = max
|
| 19 |
+
volume = (volume - min) / (max - min)
|
| 20 |
+
volume = volume.astype("float32")
|
| 21 |
+
return volume
|
| 22 |
+
|
| 23 |
+
def resize_volume(img):
|
| 24 |
+
"""Resize across z-axis"""
|
| 25 |
+
# Set the desired depth
|
| 26 |
+
desired_depth = 64
|
| 27 |
+
desired_width = 128
|
| 28 |
+
desired_height = 128
|
| 29 |
+
# Get current depth
|
| 30 |
+
current_depth = img.shape[-1]
|
| 31 |
+
current_width = img.shape[0]
|
| 32 |
+
current_height = img.shape[1]
|
| 33 |
+
# Compute depth factor
|
| 34 |
+
depth = current_depth / desired_depth
|
| 35 |
+
width = current_width / desired_width
|
| 36 |
+
height = current_height / desired_height
|
| 37 |
+
depth_factor = 1 / depth
|
| 38 |
+
width_factor = 1 / width
|
| 39 |
+
height_factor = 1 / height
|
| 40 |
+
# Rotate
|
| 41 |
+
img = ndimage.rotate(img, 90, reshape=False)
|
| 42 |
+
# Resize across z-axis
|
| 43 |
+
img = ndimage.zoom(img, (width_factor, height_factor, depth_factor), order=1)
|
| 44 |
+
return img
|
| 45 |
+
|
| 46 |
+
def process_scan(path):
|
| 47 |
+
"""Read and resize volume"""
|
| 48 |
+
# Read scan
|
| 49 |
+
volume = read_nifti_file(path)
|
| 50 |
+
# Normalize
|
| 51 |
+
volume = normalize(volume)
|
| 52 |
+
# Resize width, height and depth
|
| 53 |
+
volume = resize_volume(volume)
|
| 54 |
+
return volume
|
| 55 |
+
|
| 56 |
+
def infer(filename):
|
| 57 |
+
vol = process_scan(filename.name)
|
| 58 |
+
vol = np.expand_dims(vol, axis=0)
|
| 59 |
+
prediction = model.predict(vol)[0]
|
| 60 |
+
|
| 61 |
+
scores = [1 - prediction[0], prediction[0]]
|
| 62 |
+
|
| 63 |
+
class_names = ["normal", "abnormal"]
|
| 64 |
+
result = []
|
| 65 |
+
for score, name in zip(scores, class_names):
|
| 66 |
+
result = result + [f"This model is {(100 * score):.2f} percent confident that CT scan is {name}"]
|
| 67 |
+
|
| 68 |
+
return result
|
| 69 |
|
| 70 |
model = from_pretrained_keras('jalFaizy/3D_CNN')
|
| 71 |
|
|
|
|
| 77 |
filepath,
|
| 78 |
text,
|
| 79 |
title='3D CNN for CT scans',
|
| 80 |
+
examples=['example_1_normal.nii.gz']
|
| 81 |
)
|
| 82 |
|
| 83 |
iface.launch()
|