Commit
·
1c58e99
1
Parent(s):
2cb298b
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
os.system('pip install tensorflow')
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import numpy as np
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
from tensorflow import keras
|
| 10 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
| 11 |
+
|
| 12 |
+
num_samples = 10000
|
| 13 |
+
data_path = 'fra.txt'
|
| 14 |
+
|
| 15 |
+
input_texts = []
|
| 16 |
+
target_texts = []
|
| 17 |
+
input_characters = set()
|
| 18 |
+
target_characters = set()
|
| 19 |
+
|
| 20 |
+
with open(data_path, "r", encoding="utf-8") as f:
|
| 21 |
+
lines = f.read().split("\n")
|
| 22 |
+
for line in lines[: min(num_samples, len(lines) - 1)]:
|
| 23 |
+
input_text, target_text, _ = line.split("\t")
|
| 24 |
+
# We use "tab" as the "start sequence" character
|
| 25 |
+
# for the targets, and "\n" as "end sequence" character.
|
| 26 |
+
target_text = "\t" + target_text + "\n"
|
| 27 |
+
input_texts.append(input_text)
|
| 28 |
+
target_texts.append(target_text)
|
| 29 |
+
for char in input_text:
|
| 30 |
+
if char not in input_characters:
|
| 31 |
+
input_characters.add(char)
|
| 32 |
+
for char in target_text:
|
| 33 |
+
if char not in target_characters:
|
| 34 |
+
target_characters.add(char)
|
| 35 |
+
|
| 36 |
+
input_characters = sorted(list(input_characters))
|
| 37 |
+
target_characters = sorted(list(target_characters))
|
| 38 |
+
|
| 39 |
+
input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
|
| 40 |
+
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])
|
| 41 |
+
|
| 42 |
+
num_encoder_tokens = len(input_characters)
|
| 43 |
+
num_decoder_tokens = len(target_characters)
|
| 44 |
+
max_encoder_seq_length = max([len(txt) for txt in input_texts])
|
| 45 |
+
max_decoder_seq_length = max([len(txt) for txt in target_texts])
|
| 46 |
+
|
| 47 |
+
model = from_pretrained_keras('keras-io/cl_s2s')
|
| 48 |
+
latent_dim = 256
|
| 49 |
+
|
| 50 |
+
encoder_inputs = model.input[0] # input_1
|
| 51 |
+
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
|
| 52 |
+
encoder_states = [state_h_enc, state_c_enc]
|
| 53 |
+
encoder_model = keras.Model(encoder_inputs, encoder_states)
|
| 54 |
+
|
| 55 |
+
decoder_inputs = model.input[1] # input_2
|
| 56 |
+
decoder_state_input_h = keras.Input(shape=(latent_dim,))
|
| 57 |
+
decoder_state_input_c = keras.Input(shape=(latent_dim,))
|
| 58 |
+
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
|
| 59 |
+
decoder_lstm = model.layers[3]
|
| 60 |
+
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
|
| 61 |
+
decoder_inputs, initial_state=decoder_states_inputs
|
| 62 |
+
)
|
| 63 |
+
decoder_states = [state_h_dec, state_c_dec]
|
| 64 |
+
decoder_dense = model.layers[4]
|
| 65 |
+
decoder_outputs = decoder_dense(decoder_outputs)
|
| 66 |
+
decoder_model = keras.Model(
|
| 67 |
+
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Reverse-lookup token index to decode sequences back to
|
| 71 |
+
# something readable.
|
| 72 |
+
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
|
| 73 |
+
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def decode_sequence(input_seq):
|
| 77 |
+
# Encode the input as state vectors.
|
| 78 |
+
|
| 79 |
+
input_seq2 = list()
|
| 80 |
+
input_seq2.append(input_seq)
|
| 81 |
+
|
| 82 |
+
infer_input_data = np.zeros((len(input_seq2), max_encoder_seq_length, num_encoder_tokens), dtype="float32")
|
| 83 |
+
|
| 84 |
+
for i, (input_text) in enumerate((input_seq2)):
|
| 85 |
+
print(i, input_text)
|
| 86 |
+
for t, char in enumerate(input_text):
|
| 87 |
+
print(t, char)
|
| 88 |
+
infer_input_data[i, t, input_token_index[char]] = 1.0
|
| 89 |
+
infer_input_data[i, t + 1:, input_token_index[" "]] = 1.0
|
| 90 |
+
|
| 91 |
+
states_value = encoder_model.predict(infer_input_data)
|
| 92 |
+
|
| 93 |
+
# Generate empty target sequence of length 1.
|
| 94 |
+
target_seq = np.zeros((1, 1, num_decoder_tokens))
|
| 95 |
+
# Populate the first character of target sequence with the start character.
|
| 96 |
+
target_seq[0, 0, target_token_index["\t"]] = 1.0
|
| 97 |
+
|
| 98 |
+
# Sampling loop for a batch of sequences
|
| 99 |
+
# (to simplify, here we assume a batch of size 1).
|
| 100 |
+
stop_condition = False
|
| 101 |
+
decoded_sentence = ""
|
| 102 |
+
while not stop_condition:
|
| 103 |
+
output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
|
| 104 |
+
|
| 105 |
+
# Sample a token
|
| 106 |
+
sampled_token_index = np.argmax(output_tokens[0, -1, :])
|
| 107 |
+
sampled_char = reverse_target_char_index[sampled_token_index]
|
| 108 |
+
decoded_sentence += sampled_char
|
| 109 |
+
|
| 110 |
+
# Exit condition: either hit max length
|
| 111 |
+
# or find stop character.
|
| 112 |
+
if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
|
| 113 |
+
stop_condition = True
|
| 114 |
+
|
| 115 |
+
# Update the target sequence (of length 1).
|
| 116 |
+
target_seq = np.zeros((1, 1, num_decoder_tokens))
|
| 117 |
+
target_seq[0, 0, sampled_token_index] = 1.0
|
| 118 |
+
|
| 119 |
+
# Update states
|
| 120 |
+
states_value = [h, c]
|
| 121 |
+
|
| 122 |
+
return decoded_sentence
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
input_1 = gr.inputs.Textbox(lines=2)
|
| 126 |
+
output_1 = gr.outputs.Textbox()
|
| 127 |
+
|
| 128 |
+
iface = gr.Interface(decode_sequence,
|
| 129 |
+
inputs=input_1, outputs=["highlight"],
|
| 130 |
+
examples=[["Be kind."],
|
| 131 |
+
["Hug me."]],
|
| 132 |
+
title="Character Level Recurrent Seq2Seq Model",
|
| 133 |
+
article="Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")
|
| 134 |
+
|
| 135 |
+
iface.launch(debug=True)
|