Spaces:
Runtime error
Runtime error
| import tensorflow as tf | |
| import huggingface_hub as hf_hub | |
| import gradio as gr | |
| num_rows = 3 | |
| num_cols = 3 | |
| num_images = num_rows * num_cols | |
| image_size = 64 | |
| plot_image_size = 64 | |
| def load_model(): | |
| model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-model") | |
| return model | |
| def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate): | |
| start_angle = tf.acos(max_signal_rate) | |
| end_angle = tf.acos(min_signal_rate) | |
| diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle) | |
| signal_rates = tf.cos(diffusion_angles) | |
| noise_rates = tf.sin(diffusion_angles) | |
| return noise_rates, signal_rates | |
| def generate_images(model, num_images, diffusion_steps, stochasticity, min_signal_rate, max_signal_rate): | |
| step_size = 1.0 / diffusion_steps | |
| initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3)) | |
| noisy_images = initial_noise | |
| for step in range(diffusion_steps): | |
| diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size | |
| next_diffusion_times = diffusion_times - step_size | |
| noise_rates, signal_rates = diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate) | |
| next_noise_rates, next_signal_rates = diffusion_schedule(next_diffusion_times, min_signal_rate, max_signal_rate) | |
| sample_noises = tf.random.normal(shape=(num_images, image_size, image_size, 3)) | |
| sample_noise_rates = stochasticity * (1.0 - (signal_rates / next_signal_rates)**2)**0.5 * (next_noise_rates / noise_rates) | |
| pred_noises = model([noisy_images, noise_rates]) | |
| pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates | |
| noisy_images = ( | |
| next_signal_rates * pred_images | |
| + (next_noise_rates**2 - sample_noise_rates**2)**0.5 * pred_noises | |
| + sample_noise_rates * sample_noises | |
| ) | |
| generated_images = tf.clip_by_value(0.5 + 0.3 * pred_images, 0.0, 1.0) | |
| generated_images = tf.image.resize( | |
| generated_images, (plot_image_size, plot_image_size), method="nearest" | |
| ) | |
| return generated_images.numpy() | |
| model = load_model() | |
| gr.Interface( | |
| generate_images, | |
| inputs=[ | |
| model, | |
| num_images, | |
| gr.inputs.Slider(1, 20, default=10, label="Diffusion steps"), | |
| gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.0, label="Stochasticity"), | |
| gr.inputs.Slider(0.02, 0.10, step=0.01, default=0.02, label="Minimal signal rate"), | |
| gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"), | |
| ], | |
| outputs="image", | |
| ).launch() |