File size: 9,787 Bytes
93c5002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# /// script
# dependencies = [
# "torch",
# "numpy",
# ]
# ///
"""Reusable benchmarking utilities for performance testing."""
import time
import numpy as np
from contextlib import contextmanager
from typing import Callable, Dict, Tuple, Any, Optional
import torch
def to_dtype(dtype_str: str):
"""Convert string to torch dtype."""
if dtype_str == "float16":
return torch.float16
if dtype_str == "bfloat16":
return torch.bfloat16
return torch.float32
def _sync(device: str):
"""Synchronize device if CUDA."""
if device == "cuda":
torch.cuda.synchronize()
def _compute_stats(times_s, tokens: Optional[int] = None) -> Dict[str, float]:
"""Compute comprehensive latency and throughput statistics."""
lat_ms = np.array([t * 1000.0 for t in times_s])
lat_ms_sorted = np.sort(lat_ms)
n = len(lat_ms)
stats = {
"avg_ms": np.mean(lat_ms),
"min_ms": np.min(lat_ms),
"max_ms": np.max(lat_ms),
"std_ms": np.std(lat_ms),
"p50_ms": np.percentile(lat_ms, 50),
"p95_ms": np.percentile(lat_ms, 95),
"p99_ms": np.percentile(lat_ms, 99),
"num_iters": n
}
if tokens is not None and n > 0:
avg_s = np.mean(times_s)
stats["tokens_per_s"] = tokens / avg_s if avg_s > 0 else float("inf")
stats["throughput_variance"] = np.std([tokens / t for t in times_s if t > 0])
return stats
def _format_timing_stats(stats: Dict[str, float], tokens: Optional[int] = None) -> str:
"""Format timing statistics for display."""
lines = [
"\n━━━━━━━━━━━━━━━━━━━━ Benchmark Results ━━━━━━━━━━━━━━━━━━━━",
f"Iterations: {stats.get('num_iters', 0)}",
"\nLatency Statistics:",
f" Average: {stats['avg_ms']:.3f} ms",
f" Min: {stats['min_ms']:.3f} ms",
f" Max: {stats['max_ms']:.3f} ms",
f" Std Dev: {stats['std_ms']:.3f} ms",
"\nPercentiles:",
f" P50 (median): {stats['p50_ms']:.3f} ms",
f" P95: {stats['p95_ms']:.3f} ms",
f" P99: {stats['p99_ms']:.3f} ms",
]
if tokens is not None and 'tokens_per_s' in stats:
lines.extend([
"\nThroughput:",
f" Tokens/sec: {stats['tokens_per_s']:.1f}",
f" Std Dev: {stats.get('throughput_variance', 0):.1f}",
])
lines.append("━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━")
return "\n".join(lines)
def _bench_engine(
call: Callable[[], Any], *, warmup: int, iters: int, device: str, dtype, input_gen: Callable[[], Any] = None
) -> Tuple[Any, list]:
"""Core benchmarking engine with warmup and timing."""
use_autocast = device == "cuda" and dtype in (torch.float16, torch.bfloat16)
# Warmup phase
print(f"\nWarming up ({warmup} iterations)...")
with torch.inference_mode():
for _ in range(max(0, warmup)):
if use_autocast:
with torch.autocast(device_type="cuda", dtype=dtype):
if input_gen is not None:
_ = call(input_gen())
else:
_ = call()
else:
if input_gen is not None:
_ = call(input_gen())
else:
_ = call()
_sync(device)
# Measurement phase
print(f"Benchmarking ({iters} iterations)...")
times_s = []
last = None
with torch.inference_mode():
for i in range(max(1, iters)):
start = time.perf_counter()
if use_autocast:
with torch.autocast(device_type="cuda", dtype=dtype):
if input_gen is not None:
last = call(input_gen())
else:
last = call()
else:
if input_gen is not None:
last = call(input_gen())
else:
last = call()
_sync(device)
end = time.perf_counter()
times_s.append(end - start)
# Progress indicator every 20% of iterations
if i > 0 and i % max(1, iters // 5) == 0:
pct = (i / iters) * 100
avg_so_far = np.mean(times_s[:i]) * 1000
print(f" Progress: {pct:.0f}% complete (avg: {avg_so_far:.3f} ms)")
return last, times_s
def tensor_stats(t: torch.Tensor) -> str:
"""Generate comprehensive stats string for a tensor."""
return (f"shape={tuple(t.shape)}, "
f"dtype={t.dtype}, "
f"device={t.device}, "
f"range=[{t.min().item():.6f}, {t.max().item():.6f}], "
f"mean={t.mean().item():.6f}, "
f"std={t.std().item():.6f}, "
f"norm={t.norm().item():.6f}")
@contextmanager
def bench_context(
*, warmup: int = 25, iters: int = 100, device: str = "cuda", dtype=torch.float32, tokens: Optional[int] = None, verbose: bool = True, save_json: Optional[str] = None, vary_inputs: bool = True
):
"""Context that yields a runner: runner(fn, *args, **kwargs) -> (result, stats).
If vary_inputs=True, the first argument should be a base tensor that will be varied each iteration
by adding a small deterministic increment to prevent caching artifacts.
"""
def runner(fn: Callable[..., Any], *args, **kwargs) -> Tuple[Any, Dict[str, float]]:
# Log configuration
if verbose:
print(f"\n┌─ Benchmark Configuration ─────────────────────────────┐")
# print(f"│ Device: {device:<15} Dtype: {dtype} │")
print(f"│ Warmup: {warmup:<15} Iters: {iters} │")
if tokens:
print(f"│ Tokens: {tokens} │")
if vary_inputs:
print(f"│ Input Variation: Enabled (prevents caching artifacts) │")
print(f"└────────────────────────────────────────────────────────┘")
# Set up input generation
input_gen = None
if vary_inputs and args and isinstance(args[0], torch.Tensor):
base_input = args[0].clone()
iteration_counter = [0] # Use list for mutable closure
def generate_varied_input():
"""Generate input tensor varied by iteration to prevent caching."""
# Add small deterministic increment: 0.001 * iteration_number
varied_input = base_input + (iteration_counter[0] * 0.001)
iteration_counter[0] += 1
return varied_input
input_gen = generate_varied_input
call = lambda x: fn(x, *args[1:], **kwargs)
# Log base input stats
if verbose:
print(f"\nBase Input: {tensor_stats(base_input)}")
print(f"Input Variation: +{0.001:.3f} * iteration (deterministic)")
else:
# Legacy mode - static inputs
call = lambda: fn(*args, **kwargs)
if verbose and args and isinstance(args[0], torch.Tensor):
print(f"\nInput: {tensor_stats(args[0])}")
result, times_s = _bench_engine(call, warmup=warmup, iters=iters, device=device, dtype=dtype, input_gen=input_gen)
# Log output if it's a tensor or tuple with tensors
if verbose:
print("\nOutput tensors:")
if isinstance(result, torch.Tensor):
print(f" Primary: {tensor_stats(result)}")
elif isinstance(result, tuple) and len(result) > 0 and isinstance(result[0], torch.Tensor):
print(f" Primary: {tensor_stats(result[0])}")
if len(result) > 1:
if isinstance(result[1], torch.Tensor):
print(f" Auxiliary: {tensor_stats(result[1])}")
else:
print(f" Auxiliary: {type(result[1]).__name__}")
# Compute and display statistics
stats = _compute_stats(times_s, tokens=tokens)
if verbose:
print(_format_timing_stats(stats, tokens))
# Save to JSON if requested
if save_json:
import json
json_data = {
"implementation": save_json.replace(".json", ""),
"config": {
"warmup": warmup,
"iters": iters,
"device": str(device), # Convert device to string
"dtype": str(dtype),
"tokens": tokens,
"vary_inputs": vary_inputs
},
"stats": stats,
"output_sum": float(result[0].sum().item()) if isinstance(result, tuple) and len(result) > 0 else float(result.sum().item()) if isinstance(result, torch.Tensor) else None
}
with open(save_json, 'w') as f:
json.dump(json_data, f, indent=2)
if verbose:
print(f"\nSaved benchmark results to {save_json}")
return result, stats
yield runner
def set_seed(seed: int):
"""Set seeds for reproducibility."""
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False |