File size: 2,807 Bytes
58b76f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "numpy",
#     "torch",
#     "kernels-benchmark-tools",
# ]
#
# [tool.uv.sources]
# kernels-benchmark-tools = { git = "https://github.com/drbh/kernels-benchmark-tools.git", branch = "main" }
# ///
import os
import csv
from pathlib import Path
import json

# --- Locate benchmark artifacts --------------------------------------------------
cache_dirs = {
    "Flash (PyTorch SDPA)": os.environ.get('UVNOTE_FILE_FLASH_ATTENTION_BENCHMARK'),
    "MemEff (PyTorch SDPA)": os.environ.get('UVNOTE_FILE_MEM_EFFICIENT_ATTENTION_BENCHMARK'),
    "Flash Attn 2": os.environ.get('UVNOTE_FILE_FLASH_ATTN2_BENCHMARK'),
    "xFormers": os.environ.get('UVNOTE_FILE_XFORMERS_BENCHMARK'),
    "SageAttention": os.environ.get('UVNOTE_FILE_SAGE_ATTENTION_BENCHMARK'),
    "Compiled (default)": os.environ.get('UVNOTE_FILE_COMPILED_VARIANTS_BENCHMARK_DEFAULT'),
    "Compiled (max-autotune)": os.environ.get('UVNOTE_FILE_COMPILED_VARIANTS_BENCHMARK_MAX_AUTOTUNE'),
    "HF Kernels Flash Attn": os.environ.get('UVNOTE_FILE_HF_KERNELS_FLASH_ATTN_BENCHMARK'),
    "HF Kernels Flash Attn3": os.environ.get('UVNOTE_FILE_HF_KERNELS_FLASH_ATTN3_BENCHMARK'),
}

file_mapping = {
    "Flash (PyTorch SDPA)": "attn.jsonl",
    "MemEff (PyTorch SDPA)": "attn.jsonl",
    "Flash Attn 2": "attn.jsonl",
    "xFormers": "attn.jsonl",
    "SageAttention": "attn.jsonl",
    "Compiled (default)": "attn_default.jsonl",
    "Compiled (max-autotune)": "attn_max_autotune.jsonl",
    "HF Kernels Flash Attn": "attn.jsonl",
    "HF Kernels Flash Attn3": "attn.jsonl",
}

# Collect all benchmark data
all_data = {}
for name, cache_dir in cache_dirs.items():
    if cache_dir:
        path = Path(cache_dir) / file_mapping[name]
        if path.exists() and path.stat().st_size > 0:
            with open(path, 'r') as f:
                records = [json.loads(line) for line in f]
                all_data[name] = records

# Export to CSV
csv_path = Path("latency.csv")
with open(csv_path, 'w', newline='') as csvfile:
    writer = csv.writer(csvfile)

    # Write header
    header = ["Implementation", "Sequence Length", "Latency (ms)", "Min (ms)", "Max (ms)", "Median (ms)"]
    writer.writerow(header)

    # Write data rows
    for impl_name, records in all_data.items():
        for record in records:
            row = [
                impl_name,
                record.get('seqlen', ''),
                record.get('latency', ''),
                record.get('min', ''),
                record.get('max', ''),
                record.get('median', ''),
            ]
            writer.writerow(row)

print(f"✓ CSV export complete: {csv_path}")
print(f"Total implementations: {len(all_data)}")
print(f"Total records: {sum(len(records) for records in all_data.values())}")