|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
from kernels import get_kernel, get_local_kernel |
|
|
from bench_utils import to_dtype, tensor_stats, set_seed, bench_context |
|
|
from config import ( |
|
|
NUM_EXPERTS, HIDDEN_SIZE, TOP_K, |
|
|
BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE, |
|
|
WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED |
|
|
) |
|
|
from pathlib import Path |
|
|
import os |
|
|
|
|
|
|
|
|
data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.') |
|
|
print(f"Loading weights from: {data_dir}") |
|
|
|
|
|
router_weight = torch.load(Path(data_dir) / 'router_weight.pt') |
|
|
router_bias = torch.load(Path(data_dir) / 'router_bias.pt') |
|
|
gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt') |
|
|
gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt') |
|
|
down_proj = torch.load(Path(data_dir) / 'down_proj.pt') |
|
|
down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt') |
|
|
|
|
|
print("Loaded shared weights from artifacts") |
|
|
print(f"Router weight sum: {router_weight.sum().item():.6f}") |
|
|
print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}") |
|
|
print(f"Down sum: {down_proj.sum().item():.6f}") |
|
|
|
|
|
class YamoeRouter(nn.Module): |
|
|
def __init__(self, router_weight, router_bias): |
|
|
super().__init__() |
|
|
self.top_k = TOP_K |
|
|
self.num_experts = NUM_EXPERTS |
|
|
self.hidden_dim = HIDDEN_SIZE |
|
|
self.weight = nn.Parameter(router_weight.clone()) |
|
|
self.bias = nn.Parameter(router_bias.clone()) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_dim) |
|
|
router_logits = F.linear(hidden_states, self.weight, self.bias) |
|
|
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) |
|
|
router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype) |
|
|
router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value) |
|
|
return router_scores, router_indices |
|
|
|
|
|
def ceil_div(a, b): |
|
|
return (a + b - 1) // b |
|
|
|
|
|
class YamoeMoEMLP(nn.Module): |
|
|
def __init__(self, router_weight, router_bias, gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias): |
|
|
super().__init__() |
|
|
self.router = YamoeRouter(router_weight, router_bias) |
|
|
self.num_experts = NUM_EXPERTS |
|
|
self.hidden_size = HIDDEN_SIZE |
|
|
self.top_k = TOP_K |
|
|
|
|
|
|
|
|
|
|
|
self.yamoe = get_kernel("drbh/yamoe", revision="v0.2.0") |
|
|
|
|
|
|
|
|
self.gate_up_proj = nn.Parameter(gate_up_proj.clone()) |
|
|
self.gate_up_proj_bias = nn.Parameter(gate_up_proj_bias.clone()) |
|
|
self.down_proj = nn.Parameter(down_proj.clone()) |
|
|
self.down_proj_bias = nn.Parameter(down_proj_bias.clone()) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
batch_size, seq_len, hidden_dim = hidden_states.shape |
|
|
|
|
|
|
|
|
routing_weights, router_indices = self.router(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states_flat = hidden_states.view(-1, hidden_dim) |
|
|
routing_weights_flat = routing_weights.view(-1, self.num_experts) |
|
|
expert_capacity = ceil_div(batch_size * self.top_k, self.num_experts) |
|
|
|
|
|
|
|
|
output = self.yamoe.experts( |
|
|
hidden_states_flat, |
|
|
router_indices, |
|
|
routing_weights_flat, |
|
|
self.gate_up_proj, |
|
|
self.gate_up_proj_bias, |
|
|
self.down_proj, |
|
|
self.down_proj_bias, |
|
|
expert_capacity, |
|
|
self.num_experts, |
|
|
self.top_k, |
|
|
) |
|
|
|
|
|
|
|
|
output = output.view(batch_size, seq_len, hidden_dim) |
|
|
|
|
|
return output, routing_weights |
|
|
|
|
|
|
|
|
set_seed(GENERAL_SEED) |
|
|
|
|
|
device = torch.device(DEVICE if DEVICE == "cuda" else "cuda") |
|
|
dtype = to_dtype(DTYPE) |
|
|
|
|
|
print("\n=== Yamoe Implementation ===") |
|
|
|
|
|
model = YamoeMoEMLP( |
|
|
router_weight.to(device), |
|
|
router_bias.to(device), |
|
|
gate_up_proj.to(device), |
|
|
gate_up_proj_bias.to(device), |
|
|
down_proj.to(device), |
|
|
down_proj_bias.to(device) |
|
|
).to(device=device) |
|
|
|
|
|
print(f"Router weight sum: {model.router.weight.sum().item():.6f}") |
|
|
print(f"Gate/up proj sum: {model.gate_up_proj.sum().item():.6f}") |
|
|
print(f"Down proj sum: {model.down_proj.sum().item():.6f}") |
|
|
|
|
|
|
|
|
set_seed(INPUT_SEED) |
|
|
x = torch.randn(BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE, device=device, dtype=dtype) * 0.1 |
|
|
|
|
|
|
|
|
tokens = BATCH_SIZE * SEQ_LEN |
|
|
with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens, save_json="yamoe_results.json", vary_inputs=True) as bench: |
|
|
output, stats = bench(model, x) |
|
|
print(f"\nOutput sum: {output[0].sum().item():.6f}") |