|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
from bench_utils import to_dtype, tensor_stats, set_seed, bench_context |
|
|
from config import ( |
|
|
NUM_EXPERTS, HIDDEN_SIZE, TOP_K, |
|
|
BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE, |
|
|
WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED |
|
|
) |
|
|
from pathlib import Path |
|
|
import os |
|
|
|
|
|
|
|
|
data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.') |
|
|
|
|
|
router_weight = torch.load(Path(data_dir) / 'router_weight.pt') |
|
|
router_bias = torch.load(Path(data_dir) / 'router_bias.pt') |
|
|
gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt') |
|
|
gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt') |
|
|
down_proj = torch.load(Path(data_dir) / 'down_proj.pt') |
|
|
down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt') |
|
|
|
|
|
print("Loaded shared weights from artifacts") |
|
|
print(f"Router weight sum: {router_weight.sum().item():.6f}") |
|
|
print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}") |
|
|
print(f"Down sum: {down_proj.sum().item():.6f}") |
|
|
|
|
|
class GptOssRouter(nn.Module): |
|
|
def __init__(self, router_weight, router_bias): |
|
|
super().__init__() |
|
|
self.top_k = TOP_K |
|
|
self.num_experts = NUM_EXPERTS |
|
|
self.hidden_dim = HIDDEN_SIZE |
|
|
self.weight = nn.Parameter(router_weight.clone()) |
|
|
self.bias = nn.Parameter(router_bias.clone()) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_dim) |
|
|
router_logits = F.linear(hidden_states, self.weight, self.bias) |
|
|
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) |
|
|
router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype) |
|
|
router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value) |
|
|
return router_scores, router_indices |
|
|
|
|
|
class GptOssExperts(nn.Module): |
|
|
def __init__(self, gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias): |
|
|
super().__init__() |
|
|
self.num_experts = NUM_EXPERTS |
|
|
self.hidden_size = HIDDEN_SIZE |
|
|
self.expert_dim = self.hidden_size |
|
|
self.gate_up_proj = nn.Parameter(gate_up_proj.clone()) |
|
|
self.gate_up_proj_bias = nn.Parameter(gate_up_proj_bias.clone()) |
|
|
self.down_proj = nn.Parameter(down_proj.clone()) |
|
|
self.down_proj_bias = nn.Parameter(down_proj_bias.clone()) |
|
|
self.alpha = 1.702 |
|
|
self.limit = 7.0 |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor: |
|
|
batch_size = hidden_states.shape[0] |
|
|
hidden_states = hidden_states.reshape(-1, self.hidden_size) |
|
|
num_experts = routing_weights.shape[1] |
|
|
|
|
|
if hidden_states.device.type == "cpu" or self.training: |
|
|
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) |
|
|
with torch.no_grad(): |
|
|
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts) |
|
|
expert_mask = expert_mask.permute(2, 1, 0) |
|
|
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() |
|
|
|
|
|
for expert_idx in expert_hit[:]: |
|
|
expert_idx = expert_idx[0] |
|
|
with torch.no_grad(): |
|
|
_, token_idx = torch.where(expert_mask[expert_idx]) |
|
|
current_state = hidden_states[token_idx] |
|
|
gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx] |
|
|
gate, up = gate_up[..., ::2], gate_up[..., 1::2] |
|
|
gate = gate.clamp(min=None, max=self.limit) |
|
|
up = up.clamp(min=-self.limit, max=self.limit) |
|
|
glu = gate * torch.sigmoid(gate * self.alpha) |
|
|
gated_output = (up + 1) * glu |
|
|
out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx] |
|
|
weighted_output = out * routing_weights[token_idx, expert_idx, None] |
|
|
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) |
|
|
next_states = next_states.view(batch_size, -1, self.hidden_size) |
|
|
else: |
|
|
hidden_states = hidden_states.repeat(num_experts, 1) |
|
|
hidden_states = hidden_states.view(num_experts, -1, self.hidden_size) |
|
|
gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :] |
|
|
gate, up = gate_up[..., ::2], gate_up[..., 1::2] |
|
|
gate = gate.clamp(min=None, max=self.limit) |
|
|
up = up.clamp(min=-self.limit, max=self.limit) |
|
|
glu = gate * torch.sigmoid(gate * self.alpha) |
|
|
next_states = torch.bmm(((up + 1) * glu), self.down_proj) |
|
|
next_states = next_states + self.down_proj_bias[..., None, :] |
|
|
next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size) |
|
|
next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None] |
|
|
next_states = next_states.sum(dim=0) |
|
|
return next_states |
|
|
|
|
|
class GptOssMoEMLP(nn.Module): |
|
|
def __init__(self, router_weight, router_bias, gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias): |
|
|
super().__init__() |
|
|
self.router = GptOssRouter(router_weight, router_bias) |
|
|
self.experts = GptOssExperts(gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
router_scores, router_indices = self.router(hidden_states) |
|
|
routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores) |
|
|
return routed_out, router_scores |
|
|
|
|
|
|
|
|
set_seed(GENERAL_SEED) |
|
|
|
|
|
device = torch.device(DEVICE) |
|
|
dtype = to_dtype(DTYPE) |
|
|
|
|
|
print("\n=== GPT-OSS Implementation ===") |
|
|
|
|
|
model = GptOssMoEMLP( |
|
|
router_weight.to(device), |
|
|
router_bias.to(device), |
|
|
gate_up_proj.to(device), |
|
|
gate_up_proj_bias.to(device), |
|
|
down_proj.to(device), |
|
|
down_proj_bias.to(device) |
|
|
).to(device=device) |
|
|
|
|
|
print(f"Router weight sum: {model.router.weight.sum().item():.6f}") |
|
|
print(f"Gate/up proj sum: {model.experts.gate_up_proj.sum().item():.6f}") |
|
|
print(f"Down proj sum: {model.experts.down_proj.sum().item():.6f}") |
|
|
|
|
|
|
|
|
set_seed(INPUT_SEED) |
|
|
x = torch.randn(BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE, device=device, dtype=dtype) * 0.1 |
|
|
|
|
|
|
|
|
tokens = BATCH_SIZE * SEQ_LEN |
|
|
with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens, save_json="gptoss_results.json", vary_inputs=True) as bench: |
|
|
output, stats = bench(model, x) |
|
|
print(f"\nOutput sum: {output[0].sum().item():.6f}") |