drbh's picture
drbh HF Staff
Upload folder using huggingface_hub
d8c3a70 verified
raw
history blame
1.29 kB
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "numpy",
# "torch==2.8.0",
# "kernels",
# "kernels-benchmark-tools",
# ]
#
# [tool.uv.sources]
# kernels-benchmark-tools = { path = "../../../../../tools", editable = true }
# ///
import torch
import sys
from kernels_benchmark_tools import KernelTypeEnum, run_benchmark
from kernels import get_kernel
# Load the layer norm kernel
layer_norm_kernel = get_kernel("kernels-community/layer-norm")
def hf_kernels_layer_norm(x, weight, bias, eps: float = 1e-5):
B, S, D = x.shape
# The kernel expects [N, D] input; support beta (bias) if provided.
out = layer_norm_kernel.dropout_add_ln_fwd(
input=x.view(-1, D),
gamma=weight,
beta=bias,
rowscale=None,
colscale=None,
x0_subset=None,
z_subset=None,
dropout_p=0.0,
epsilon=eps,
rowscale_const=1.0,
z_numrows=S,
gen=None,
residual_in_fp32=False,
is_rms_norm=False,
)[0].view(B, S, D)
return out
run_benchmark(
kernel_type=KernelTypeEnum.LAYER_NORM,
impl_name="hf_kernels_layer_norm",
impl_tags={"family": "hf-kernels", "repo": "kernels-community/layer-norm", "op": "layer_norm"},
impl_func=hf_kernels_layer_norm,
)