# /// script # requires-python = ">=3.10" # dependencies = [ # "numpy", # "torch==2.8.0", # "kernels-benchmark-tools", # ] # # [tool.uv.sources] # kernels-benchmark-tools = { path = "../../../../../tools", editable = true } # /// import torch import sys from kernels_benchmark_tools import KernelTypeEnum, run_benchmark import torch, torch.nn.functional as F def swiglu_eager(x): d = x.shape[-1] // 2 return F.silu(x[..., :d]) * x[..., d:] run_benchmark( kernel_type=KernelTypeEnum.ACTIVATION, impl_name="torch_eager", impl_tags={"family":"hf-kernels", "backend":"eager"}, impl_func=swiglu_eager, )