Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| import random | |
| import hashlib | |
| from diffusers import DiffusionPipeline | |
| from transformers import pipeline | |
| from diffusers.utils import export_to_video | |
| # Optional: xformers optimization | |
| try: | |
| import xformers | |
| has_xformers = True | |
| except ImportError: | |
| has_xformers = False | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| MAX_SEED = 2**32 - 1 | |
| # Model lists ordered by size | |
| image_models = { | |
| "Stable Diffusion 1.5 (light)": "runwayml/stable-diffusion-v1-5", | |
| "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1", | |
| "Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0", | |
| "Playground v2": "playgroundai/playground-v2-1024px-aesthetic", | |
| "Muse 512": "amused/muse-512-finetuned", | |
| "PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS", | |
| "Kandinsky 3": "kandinsky-community/kandinsky-3", | |
| "BLIP Diffusion": "Salesforce/blipdiffusion", | |
| "SDXL Base 1.0 (heavy)": "stabilityai/stable-diffusion-xl-base-1.0", | |
| "OpenJourney (heavy)": "prompthero/openjourney" | |
| } | |
| text_models = { | |
| "GPT-2 (light)": "gpt2", | |
| "GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B", | |
| "BLOOM 1.1B": "bigscience/bloom-1b1", | |
| "GPT-J 6B": "EleutherAI/gpt-j-6B", | |
| "Falcon 7B": "tiiuae/falcon-7b", | |
| "XGen 7B": "Salesforce/xgen-7b-8k-base", | |
| "BTLM 3B": "cerebras/btlm-3b-8k-base", | |
| "MPT 7B": "mosaicml/mpt-7b", | |
| "StableLM 2": "stabilityai/stablelm-2-1_6b", | |
| "LLaMA 2 7B (heavy)": "meta-llama/Llama-2-7b-hf" | |
| } | |
| video_models = { | |
| "CogVideoX-2B": "THUDM/CogVideoX-2b", | |
| "CogVideoX-5B": "THUDM/CogVideoX-5b", | |
| "AnimateDiff-Lightning": "ByteDance/AnimateDiff-Lightning", | |
| "ModelScope T2V": "damo-vilab/text-to-video-ms-1.7b", | |
| "VideoCrafter2": "VideoCrafter/VideoCrafter2", | |
| "Open-Sora-Plan-v1.2.0": "LanguageBind/Open-Sora-Plan-v1.2.0", | |
| "LTX-Video": "Lightricks/LTX-Video", | |
| "HunyuanVideo": "tencent/HunyuanVideo", | |
| "Latte-1": "maxin-cn/Latte-1", | |
| "LaVie": "Vchitect/LaVie" | |
| } | |
| # Caches | |
| image_pipes = {} | |
| text_pipes = {} | |
| video_pipes = {} | |
| image_cache = {} | |
| text_cache = {} | |
| video_cache = {} | |
| def hash_inputs(*args): | |
| combined = "|".join(map(str, args)) | |
| return hashlib.sha256(combined.encode()).hexdigest() | |
| def generate_image(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| key = hash_inputs(prompt, model_name, seed) | |
| if key in image_cache: | |
| progress(100, desc="Using cached image.") | |
| return image_cache[key], seed | |
| progress(10, desc="Loading model...") | |
| if model_name not in image_pipes: | |
| pipe = DiffusionPipeline.from_pretrained( | |
| image_models[model_name], | |
| torch_dtype=torch_dtype, | |
| low_cpu_mem_usage=True | |
| ) | |
| if torch.__version__.startswith("2"): | |
| pipe = torch.compile(pipe) | |
| if has_xformers and device == "cuda": | |
| try: | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except Exception: | |
| pass | |
| pipe.to(device) | |
| image_pipes[model_name] = pipe | |
| pipe = image_pipes[model_name] | |
| progress(40, desc="Generating image...") | |
| result = pipe(prompt=prompt, generator=torch.manual_seed(seed), num_inference_steps=15, width=512, height=512) | |
| image = result.images[0] | |
| image_cache[key] = image | |
| progress(100, desc="Done.") | |
| return image, seed | |
| def generate_text(prompt, model_name, progress=gr.Progress(track_tqdm=True)): | |
| key = hash_inputs(prompt, model_name) | |
| if key in text_cache: | |
| progress(100, desc="Using cached text.") | |
| return text_cache[key] | |
| progress(10, desc="Loading model...") | |
| if model_name not in text_pipes: | |
| text_pipes[model_name] = pipeline( | |
| "text-generation", | |
| model=text_models[model_name], | |
| device=0 if device == "cuda" else -1 | |
| ) | |
| pipe = text_pipes[model_name] | |
| progress(40, desc="Generating text...") | |
| result = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text'] | |
| text_cache[key] = result | |
| progress(100, desc="Done.") | |
| return result | |
| def generate_video(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| key = hash_inputs(prompt, model_name, seed) | |
| if key in video_cache: | |
| progress(100, desc="Using cached video.") | |
| return video_cache[key], seed | |
| progress(10, desc="Loading model...") | |
| if model_name not in video_pipes: | |
| pipe = DiffusionPipeline.from_pretrained( | |
| video_models[model_name], | |
| torch_dtype=torch_dtype, | |
| variant="fp16" | |
| ) | |
| if torch.__version__.startswith("2"): | |
| pipe = torch.compile(pipe) | |
| if has_xformers and device == "cuda": | |
| try: | |
| pipe.enable_xformers_memory_efficient_attention() | |
| except Exception: | |
| pass | |
| pipe.to(device) | |
| video_pipes[model_name] = pipe | |
| pipe = video_pipes[model_name] | |
| progress(40, desc="Generating video...") | |
| result = pipe(prompt=prompt, generator=torch.manual_seed(seed), num_inference_steps=15) | |
| video_frames = result.frames[0] | |
| video_path = export_to_video(video_frames) | |
| video_cache[key] = video_path | |
| progress(100, desc="Done.") | |
| return video_path, seed | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# ⚡ Fast Multi-Model AI Playground with Caching") | |
| with gr.Tabs(): | |
| # Image Generation | |
| with gr.Tab("🖼️ Image Generation"): | |
| img_prompt = gr.Textbox(label="Prompt") | |
| img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5 (light)", label="Image Model") | |
| img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed") | |
| img_rand = gr.Checkbox(label="Randomize seed", value=True) | |
| img_btn = gr.Button("Generate Image") | |
| img_out = gr.Image() | |
| img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed]) | |
| # Text Generation | |
| with gr.Tab("📝 Text Generation"): | |
| txt_prompt = gr.Textbox(label="Prompt") | |
| txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2 (light)", label="Text Model") | |
| txt_btn = gr.Button("Generate Text") | |
| txt_out = gr.Textbox(label="Output Text") | |
| txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=[txt_out]) | |
| # Video Generation | |
| with gr.Tab("🎥 Video Generation"): | |
| vid_prompt = gr.Textbox(label="Prompt") | |
| vid_model = gr.Dropdown(choices=list(video_models.keys()), value="CogVideoX-2B", label="Video Model") | |
| vid_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed") | |
| vid_rand = gr.Checkbox(label="Randomize seed", value=True) | |
| vid_btn = gr.Button("Generate Video") | |
| vid_out = gr.Video() | |
| vid_btn.click(fn=generate_video, inputs=[vid_prompt, vid_model, vid_seed, vid_rand], outputs=[vid_out, vid_seed]) | |
| demo.launch(show_error=True) | |