Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,86 +8,86 @@ from diffusers import (
|
|
| 8 |
)
|
| 9 |
from diffusers.utils import export_to_video, load_image
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def generate_image_from_text(prompt):
|
| 22 |
-
image = txt2img_pipe(prompt, num_inference_steps=30).images[0]
|
| 23 |
-
return image
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def generate_image_from_image_and_prompt(image, prompt):
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
wan_pipe.to(device)
|
| 42 |
|
| 43 |
def generate_video_from_text(prompt):
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"
|
| 52 |
-
torch_dtype=dtype,
|
| 53 |
-
variant="fp16" if dtype == torch.float16 else None,
|
| 54 |
-
)
|
| 55 |
-
svd_pipe.to(device)
|
| 56 |
|
| 57 |
def generate_video_from_image(image):
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
# -------- Gradio Interface --------
|
| 65 |
with gr.Blocks() as demo:
|
| 66 |
-
gr.Markdown("# π§
|
| 67 |
|
| 68 |
with gr.Tab("Text β Image"):
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
btn1.click(fn=generate_image_from_text, inputs=prompt, outputs=output_image)
|
| 73 |
|
| 74 |
with gr.Tab("Image β Image"):
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
btn2.click(fn=generate_image_from_image_and_prompt, inputs=[in_image, edit_prompt], outputs=out_image)
|
| 80 |
|
| 81 |
with gr.Tab("Text β Video"):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
btn3.click(fn=generate_video_from_text, inputs=vid_prompt, outputs=output_vid)
|
| 86 |
|
| 87 |
with gr.Tab("Image β Video"):
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
btn4.click(fn=generate_video_from_image, inputs=img_input, outputs=vid_out)
|
| 92 |
|
| 93 |
demo.launch()
|
|
|
|
| 8 |
)
|
| 9 |
from diffusers.utils import export_to_video, load_image
|
| 10 |
|
| 11 |
+
# Detect device & dtype
|
|
|
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 14 |
|
| 15 |
+
# Factory to load & offload a pipeline
|
| 16 |
+
def make_pipe(cls, model_id, **kwargs):
|
| 17 |
+
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
| 18 |
+
# Enables CPU offload of model parts not in use
|
| 19 |
+
pipe.enable_model_cpu_offload()
|
| 20 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Hold pipelines in globals but donβt load yet
|
| 23 |
+
TXT2IMG_PIPE = None
|
| 24 |
+
IMG2IMG_PIPE = None
|
| 25 |
+
TXT2VID_PIPE = None
|
| 26 |
+
IMG2VID_PIPE = None
|
| 27 |
|
| 28 |
+
def generate_image_from_text(prompt):
|
| 29 |
+
global TXT2IMG_PIPE
|
| 30 |
+
if TXT2IMG_PIPE is None:
|
| 31 |
+
TXT2IMG_PIPE = make_pipe(
|
| 32 |
+
StableDiffusionPipeline,
|
| 33 |
+
"stabilityai/stable-diffusion-2-1-base"
|
| 34 |
+
).to(device)
|
| 35 |
+
return TXT2IMG_PIPE(prompt, num_inference_steps=20).images[0]
|
| 36 |
|
| 37 |
def generate_image_from_image_and_prompt(image, prompt):
|
| 38 |
+
global IMG2IMG_PIPE
|
| 39 |
+
if IMG2IMG_PIPE is None:
|
| 40 |
+
IMG2IMG_PIPE = make_pipe(
|
| 41 |
+
StableDiffusionInstructPix2PixPipeline,
|
| 42 |
+
"timbrooks/instruct-pix2pix"
|
| 43 |
+
).to(device)
|
| 44 |
+
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8)
|
| 45 |
+
return out.images[0]
|
|
|
|
| 46 |
|
| 47 |
def generate_video_from_text(prompt):
|
| 48 |
+
global TXT2VID_PIPE
|
| 49 |
+
if TXT2VID_PIPE is None:
|
| 50 |
+
TXT2VID_PIPE = make_pipe(
|
| 51 |
+
WanPipeline,
|
| 52 |
+
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 53 |
+
).to(device)
|
| 54 |
+
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
|
| 55 |
+
return export_to_video(frames, "wan_video.mp4", fps=8)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def generate_video_from_image(image):
|
| 58 |
+
global IMG2VID_PIPE
|
| 59 |
+
if IMG2VID_PIPE is None:
|
| 60 |
+
IMG2VID_PIPE = make_pipe(
|
| 61 |
+
StableVideoDiffusionPipeline,
|
| 62 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
| 63 |
+
variant="fp16" if dtype==torch.float16 else None
|
| 64 |
+
).to(device)
|
| 65 |
+
image = load_image(image).resize((512, 288))
|
| 66 |
+
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
|
| 67 |
+
return export_to_video(frames, "svd_video.mp4", fps=8)
|
| 68 |
|
|
|
|
| 69 |
with gr.Blocks() as demo:
|
| 70 |
+
gr.Markdown("# π§ Lightweight AnyβtoβAny AI Playground")
|
| 71 |
|
| 72 |
with gr.Tab("Text β Image"):
|
| 73 |
+
inp = gr.Textbox(label="Prompt")
|
| 74 |
+
out = gr.Image()
|
| 75 |
+
gr.Button("Generate").click(generate_image_from_text, inp, out)
|
|
|
|
| 76 |
|
| 77 |
with gr.Tab("Image β Image"):
|
| 78 |
+
img = gr.Image(label="Input Image")
|
| 79 |
+
prm = gr.Textbox(label="Edit Prompt")
|
| 80 |
+
out2 = gr.Image()
|
| 81 |
+
gr.Button("Generate").click(generate_image_from_image_and_prompt, [img, prm], out2)
|
|
|
|
| 82 |
|
| 83 |
with gr.Tab("Text β Video"):
|
| 84 |
+
inp2 = gr.Textbox(label="Prompt")
|
| 85 |
+
out_vid = gr.Video()
|
| 86 |
+
gr.Button("Generate").click(generate_video_from_text, inp2, out_vid)
|
|
|
|
| 87 |
|
| 88 |
with gr.Tab("Image β Video"):
|
| 89 |
+
img2 = gr.Image(label="Input Image")
|
| 90 |
+
out_vid2 = gr.Video()
|
| 91 |
+
gr.Button("Animate").click(generate_video_from_image, img2, out_vid2)
|
|
|
|
| 92 |
|
| 93 |
demo.launch()
|