human-in-the-loop
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from knowledge import graph
|
|
| 6 |
from pii import derisk
|
| 7 |
from classify import judge
|
| 8 |
from entity import resolve
|
|
|
|
| 9 |
|
| 10 |
# Define the Google Analytics script
|
| 11 |
head = """
|
|
@@ -478,4 +479,44 @@ For example, Comcast reduced repeat service calls by 17% after deploying entity
|
|
| 478 |
|
| 479 |
The result? Less agent time lost, higher customer satisfaction, and data pipelines that actually speak human.
|
| 480 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
demo.launch(allowed_paths=["."])
|
|
|
|
| 6 |
from pii import derisk
|
| 7 |
from classify import judge
|
| 8 |
from entity import resolve
|
| 9 |
+
from human import email, feedback
|
| 10 |
|
| 11 |
# Define the Google Analytics script
|
| 12 |
head = """
|
|
|
|
| 479 |
|
| 480 |
The result? Less agent time lost, higher customer satisfaction, and data pipelines that actually speak human.
|
| 481 |
""")
|
| 482 |
+
with gr.Tab("Human Feedback Content"):
|
| 483 |
+
gr.Markdown("""
|
| 484 |
+
Objective: Leveraging Human Feedback to Deliver Personalized Content that Proactively Solves Customer Pain Points
|
| 485 |
+
================================================
|
| 486 |
+
""")
|
| 487 |
+
|
| 488 |
+
in_verbatim = gr.Textbox(label="Persona")
|
| 489 |
+
in_campaign = gr.Textbox(label="campaign")
|
| 490 |
+
out_product = gr.Textbox(label="Your Personalized Email Campaign Bot")
|
| 491 |
+
|
| 492 |
+
gr.Examples(
|
| 493 |
+
[
|
| 494 |
+
["""My mortgage rate is 9%, I cannot afford it anymore, I need to refinance and I'm unemploy right now.""", "MORT"],
|
| 495 |
+
["my credit card limit is too low, I need a card with bigger limit and low fee", "CARD"]
|
| 496 |
+
],
|
| 497 |
+
[in_verbatim, in_campaign]
|
| 498 |
+
)
|
| 499 |
+
btn_recommend = gr.Button("Resolve")
|
| 500 |
+
btn_recommend.click(fn=email, inputs=[in_verbatim, in_campaign, out_product], outputs=out_product)
|
| 501 |
+
|
| 502 |
+
h_feedback = gr.Radio(['approved', 'rejected'], label="Human Feedback", info="Which campaign you want to approve?")
|
| 503 |
+
h_campaign = gr.Textbox(label="campaign")
|
| 504 |
+
btn_deliver = gr.Button("Deliver?")
|
| 505 |
+
btn_deliver.click(fn=feedback, inputs=[h_feedback, h_campaign, out_product], outputs=out_product)
|
| 506 |
+
|
| 507 |
+
gr.Markdown("""
|
| 508 |
+
Human Feedback for Personalized Content enables brands like Mr. Cooper to analyze customer preferences and pain points, then deliver tailored solutions. By embedding real-time feedback loops, they created personalized mortgage-refinancing videos showcasing individual home equity data and financial goals, resulting in 18% higher engagement and 12% lower churn.
|
| 509 |
+
|
| 510 |
+
#### Outcome:
|
| 511 |
+
|
| 512 |
+
- Dynamic content adaptation based on behavioral data (e.g., Hilton Honors’ app reduced booking friction by 40% via predictive analytics)
|
| 513 |
+
|
| 514 |
+
- Proactive problem-solving (e.g., Orangetheory Fitness used workout metrics to boost class attendance to 97%)
|
| 515 |
+
|
| 516 |
+
- 52% faster ROI through AI-driven personalization scaling
|
| 517 |
+
|
| 518 |
+
#### Ask: Ready to turn customer frustrations into loyalty drivers with content that feels personally crafted?"
|
| 519 |
+
|
| 520 |
+
This approach aligns with best-in-class use cases where feedback-driven personalization drives measurable business growth
|
| 521 |
+
""")
|
| 522 |
demo.launch(allowed_paths=["."])
|
human.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Annotated, Any, Literal
|
| 2 |
+
|
| 3 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 5 |
+
from langchain_core.tools import tool
|
| 6 |
+
from langgraph.checkpoint.memory import MemorySaver
|
| 7 |
+
from langgraph.graph import StateGraph, START, END
|
| 8 |
+
from langgraph.graph.message import add_messages
|
| 9 |
+
from langgraph.types import interrupt, Command
|
| 10 |
+
from typing_extensions import TypedDict
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
from langchain_anthropic import ChatAnthropic
|
| 14 |
+
from langchain_ollama.llms import OllamaLLM
|
| 15 |
+
from langchain_experimental.llms.ollama_functions import OllamaFunctions
|
| 16 |
+
llm = OllamaFunctions(model="qwen2.5", format="json")
|
| 17 |
+
llm_with_tools = llm #.bind_tools(tools)
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
from langchain_groq import ChatGroq
|
| 21 |
+
|
| 22 |
+
llm = ChatGroq(
|
| 23 |
+
model="llama-3.1-8b-instant",
|
| 24 |
+
temperature=0,
|
| 25 |
+
max_tokens=None,
|
| 26 |
+
timeout=None,
|
| 27 |
+
max_retries=2,
|
| 28 |
+
# other params...
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
template = """Question: {question}
|
| 32 |
+
Answer: Let's think step by step."""
|
| 33 |
+
|
| 34 |
+
prompt = ChatPromptTemplate.from_template(template)
|
| 35 |
+
|
| 36 |
+
# model = OllamaLLM(model="deepseek-r1")
|
| 37 |
+
|
| 38 |
+
chain = prompt | llm
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# print(chain.invoke({"question": "Explain like I'm 5 for capacity planning?"}))
|
| 42 |
+
|
| 43 |
+
@tool
|
| 44 |
+
def human_assistance(query: str) -> str:
|
| 45 |
+
"""Request assistance from a human."""
|
| 46 |
+
human_response = interrupt({"query": query})
|
| 47 |
+
return human_response["data"]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
tool = TavilySearchResults(max_results=2)
|
| 51 |
+
tools = [tool, human_assistance]
|
| 52 |
+
llm_with_tools=llm.bind_tools(tools)
|
| 53 |
+
|
| 54 |
+
# llm = OllamaLLM(model="deepseek-r1") #ChatAnthropic(model="claude-3-5-sonnet-20240620")
|
| 55 |
+
|
| 56 |
+
class State(TypedDict):
|
| 57 |
+
messages: Annotated[list, add_messages]
|
| 58 |
+
persona: str
|
| 59 |
+
email: str
|
| 60 |
+
release: Literal['approve', 'reject']
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
graph_builder = StateGraph(State)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def write_email(state: State):
|
| 67 |
+
prompt = f"""Write an promotional personalized email for this persona:
|
| 68 |
+
{state["persona"]}
|
| 69 |
+
"""
|
| 70 |
+
email = llm_with_tools.invoke(prompt)
|
| 71 |
+
# Because we will be interrupting during tool execution,
|
| 72 |
+
# we disable parallel tool calling to avoid repeating any
|
| 73 |
+
# tool invocations when we resume.
|
| 74 |
+
# assert len(email.tool_calls) <= 1
|
| 75 |
+
return Command(update={"email": email.content})
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
graph_builder.add_node("write_email", write_email)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def delivery(state: State):
|
| 82 |
+
print(f"""Delivering: {state['email']}""")
|
| 83 |
+
|
| 84 |
+
return Command(update={"messages": ["Email delivered to customer"]})
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
graph_builder.add_node("delivery", delivery)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def human_approval(state: State) -> Command[Literal["delivery", END]]:
|
| 91 |
+
is_approved = interrupt(
|
| 92 |
+
"Approval for release the promotional email to customer? (type: approved or rejected):"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if is_approved == "approved":
|
| 96 |
+
return Command(goto="delivery", update={"release": "approved"})
|
| 97 |
+
else:
|
| 98 |
+
return Command(goto=END, update={"release": "rejected"})
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Add the node to the graph in an appropriate location
|
| 102 |
+
# and connect it to the relevant nodes.
|
| 103 |
+
graph_builder.add_node("human_approval", human_approval)
|
| 104 |
+
|
| 105 |
+
graph_builder.add_edge(START, "write_email")
|
| 106 |
+
graph_builder.add_edge("write_email", "human_approval")
|
| 107 |
+
|
| 108 |
+
graph_builder.add_edge("delivery", END)
|
| 109 |
+
|
| 110 |
+
checkpointer = MemorySaver()
|
| 111 |
+
graph = graph_builder.compile(checkpointer=checkpointer)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def email(persona, campaign, history):
|
| 115 |
+
thread_config = {"configurable": {"thread_id": campaign}}
|
| 116 |
+
for event in graph.stream({"persona": persona}, config=thread_config):
|
| 117 |
+
for value in event.values():
|
| 118 |
+
return r"\nAssistant: ", value, r"\nValue: ", graph.get_state(thread_config).values
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def feedback(deliver, campaign, history):
|
| 122 |
+
thread_config = {"configurable": {"thread_id": campaign}}
|
| 123 |
+
for event in graph.stream(Command(resume=deliver), config=thread_config):
|
| 124 |
+
for value in event.values():
|
| 125 |
+
return r"\nAssistant: ", value, r"\nValue: ", graph.get_state(thread_config).values
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
'''
|
| 129 |
+
from IPython.display import Image, display
|
| 130 |
+
|
| 131 |
+
try:
|
| 132 |
+
display(Image(graph.get_graph().draw_mermaid_png()))
|
| 133 |
+
except Exception:
|
| 134 |
+
# This requires some extra dependencies and is optional
|
| 135 |
+
pass
|
| 136 |
+
'''
|
| 137 |
+
|
| 138 |
+
def campaign(user_input: Any, id: str):
|
| 139 |
+
thread_config = {"configurable": {"thread_id": id}}
|
| 140 |
+
for event in graph.stream(user_input, config=thread_config):
|
| 141 |
+
for value in event.values():
|
| 142 |
+
print("Assistant:", value, "Value: ", graph.get_state(thread_config).values)
|
| 143 |
+
|
| 144 |
+
"""
|
| 145 |
+
campaign({"persona": "My mortgage rate is 9%, I cannot afford it anymore, I need to refinance and I'm unemploy right now."}, "MOR")
|
| 146 |
+
|
| 147 |
+
campaign({"persona": "my credit card limit is too low, I need a card with bigger limit and low fee"}, "CARD")
|
| 148 |
+
|
| 149 |
+
campaign(Command(resume="approved"), "MOR")
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
while False:
|
| 153 |
+
try:
|
| 154 |
+
user_input = input("User: ")
|
| 155 |
+
if user_input.lower() in ["quit", "exit", "q"]:
|
| 156 |
+
print("Goodbye!")
|
| 157 |
+
break
|
| 158 |
+
campaign(user_input, "MORT")
|
| 159 |
+
# stream_graph_updates(user_input)
|
| 160 |
+
except Exception as e:
|
| 161 |
+
# fallback if input() is not available
|
| 162 |
+
user_input = "What do you know about LangGraph?"
|
| 163 |
+
print("User: " + user_input)
|
| 164 |
+
campaign(user_input, "MORT")
|
| 165 |
+
# stream_graph_updates(user_input)
|
| 166 |
+
break
|