knowledge graph
Browse files- app.py +21 -2
- knowledge.py +79 -0
- requirements.txt +7 -1
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import gradio as gr
|
|
| 2 |
from rag import rbc_product
|
| 3 |
from tool import rival_product
|
| 4 |
from graphrag import reasoning
|
| 5 |
-
|
| 6 |
with gr.Blocks() as demo:
|
| 7 |
with gr.Tab("RAG"):
|
| 8 |
gr.Markdown("""
|
|
@@ -122,4 +122,23 @@ Low APR and great customer service. I would highly recommend if you’re looking
|
|
| 122 |
btn_recommend.click(fn=reasoning, inputs=[in_verbatim, in_question], outputs=out_product)
|
| 123 |
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from rag import rbc_product
|
| 3 |
from tool import rival_product
|
| 4 |
from graphrag import reasoning
|
| 5 |
+
from knowledge import graph
|
| 6 |
with gr.Blocks() as demo:
|
| 7 |
with gr.Tab("RAG"):
|
| 8 |
gr.Markdown("""
|
|
|
|
| 122 |
btn_recommend.click(fn=reasoning, inputs=[in_verbatim, in_question], outputs=out_product)
|
| 123 |
|
| 124 |
|
| 125 |
+
with gr.Tab("Knowledge Graph"):
|
| 126 |
+
gr.Markdown("""
|
| 127 |
+
Objective: Explain concept in knowledge graph structured output
|
| 128 |
+
================================================
|
| 129 |
+
""")
|
| 130 |
+
in_verbatim = gr.Textbox(label="Question")
|
| 131 |
+
out_product = gr.Image(label="Knowledge Graph")
|
| 132 |
+
|
| 133 |
+
gr.Examples(
|
| 134 |
+
[
|
| 135 |
+
[
|
| 136 |
+
"Explain me about red flags in transaction pattern for fraud detection"
|
| 137 |
+
]
|
| 138 |
+
],
|
| 139 |
+
[in_verbatim]
|
| 140 |
+
)
|
| 141 |
+
btn_recommend = gr.Button("Graph It!")
|
| 142 |
+
btn_recommend.click(fn=graph, inputs=in_verbatim, outputs=out_product)
|
| 143 |
+
|
| 144 |
+
demo.launch(allowed_paths=["./"])
|
knowledge.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from openai import OpenAI
|
| 2 |
+
import instructor
|
| 3 |
+
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
+
from typing import List
|
| 6 |
+
from graphviz import Digraph
|
| 7 |
+
|
| 8 |
+
class Node(BaseModel, frozen=True):
|
| 9 |
+
"""
|
| 10 |
+
Node representing concept in the subject domain
|
| 11 |
+
"""
|
| 12 |
+
id: int
|
| 13 |
+
label: str = Field(..., description = "description of the concept concept in the subject domain")
|
| 14 |
+
color: str
|
| 15 |
+
|
| 16 |
+
class Edge(BaseModel, frozen=True):
|
| 17 |
+
"""
|
| 18 |
+
Edge representing relationship between concepts in the subject domain
|
| 19 |
+
"""
|
| 20 |
+
source: int = Field(..., description = "source representing concept in the subject domain")
|
| 21 |
+
target: int = Field(..., description = "target representing concept in the subject domain")
|
| 22 |
+
label: str = Field(..., description = "description representing relationship between concepts in the subject domain")
|
| 23 |
+
color: str = "black"
|
| 24 |
+
|
| 25 |
+
class KnowledgeGraph(BaseModel):
|
| 26 |
+
"""
|
| 27 |
+
graph representation of subject domain
|
| 28 |
+
"""
|
| 29 |
+
nodes: List[Node] = Field(..., default_factory=list)
|
| 30 |
+
edges: List[Edge] = Field(..., default_factory=list)
|
| 31 |
+
|
| 32 |
+
from groq import Groq
|
| 33 |
+
import os
|
| 34 |
+
# Initialize with API key
|
| 35 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
| 36 |
+
|
| 37 |
+
# Enable instructor patches for Groq client
|
| 38 |
+
client = instructor.from_groq(client)
|
| 39 |
+
"""
|
| 40 |
+
client = instructor.from_openai(
|
| 41 |
+
OpenAI(
|
| 42 |
+
base_url="http://localhost:11434/v1",
|
| 43 |
+
api_key="ollama",
|
| 44 |
+
),
|
| 45 |
+
mode=instructor.Mode.JSON,
|
| 46 |
+
)
|
| 47 |
+
"""
|
| 48 |
+
def generate_graph(input) -> KnowledgeGraph:
|
| 49 |
+
return client.chat.completions.create(
|
| 50 |
+
model='llama-3.1-8b-instant', #"llama3.2",
|
| 51 |
+
max_retries=5,
|
| 52 |
+
messages=[
|
| 53 |
+
{
|
| 54 |
+
"role": "user",
|
| 55 |
+
"content": f"Help me understand the following by describing it as a detailed knowledge graph: {input}",
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
response_model=KnowledgeGraph,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def visualize_knowledge_graph(kg: KnowledgeGraph):
|
| 63 |
+
dot = Digraph(comment="Knowledge Graph")
|
| 64 |
+
|
| 65 |
+
# Add nodes
|
| 66 |
+
for node in kg.nodes:
|
| 67 |
+
dot.node(str(node.id), node.label, color=node.color)
|
| 68 |
+
|
| 69 |
+
# Add edges
|
| 70 |
+
for edge in kg.edges:
|
| 71 |
+
dot.edge(str(edge.source), str(edge.target), label=edge.label, color=edge.color)
|
| 72 |
+
|
| 73 |
+
# Render the graph
|
| 74 |
+
dot.render("knowledge_graph", format="png")
|
| 75 |
+
|
| 76 |
+
def graph(query):
|
| 77 |
+
graph = generate_graph(query)
|
| 78 |
+
visualize_knowledge_graph(graph)
|
| 79 |
+
return "./knowledge_graph.png"
|
requirements.txt
CHANGED
|
@@ -11,6 +11,7 @@ llama-index
|
|
| 11 |
faiss-cpu
|
| 12 |
tavily-python
|
| 13 |
|
|
|
|
| 14 |
#llama-index-llms-litellm
|
| 15 |
|
| 16 |
#llama-index-llms-huggingface-api
|
|
@@ -24,4 +25,9 @@ langchain-community
|
|
| 24 |
pandas
|
| 25 |
#gradio-client
|
| 26 |
pillow
|
| 27 |
-
numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
faiss-cpu
|
| 12 |
tavily-python
|
| 13 |
|
| 14 |
+
#GRAPHRAG
|
| 15 |
#llama-index-llms-litellm
|
| 16 |
|
| 17 |
#llama-index-llms-huggingface-api
|
|
|
|
| 25 |
pandas
|
| 26 |
#gradio-client
|
| 27 |
pillow
|
| 28 |
+
numpy
|
| 29 |
+
|
| 30 |
+
#KNOWLEDGE GRAPH
|
| 31 |
+
graphviz
|
| 32 |
+
pydantic
|
| 33 |
+
instructor[groq]
|