Spaces:
Running
Running
| #!/usr/bin/env python3 | |
| # coding: utfβ8 | |
| """ | |
| CosyVoice gRPC backβend β updated to mirror the FastAPI logic | |
| * loads CosyVoice2 with TRT / FP16 first (falls back to CosyVoice) | |
| * inference_zero_shot β adds stream=False + speed | |
| * inference_instruct β keeps original βspeakerβIDβ path | |
| * inference_instruct2 β new: promptβaudio + speed (no speakerβID) | |
| """ | |
| import io, tempfile, requests, soundfile as sf, torchaudio | |
| import os | |
| import sys | |
| from concurrent import futures | |
| import argparse | |
| import logging | |
| import grpc | |
| import numpy as np | |
| import torch | |
| import cosyvoice_pb2 | |
| import cosyvoice_pb2_grpc | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # setβup | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
| logging.basicConfig(level=logging.INFO, | |
| format="%(asctime)s %(levelname)s %(message)s") | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.extend([ | |
| f"{ROOT_DIR}/../../..", | |
| f"{ROOT_DIR}/../../../third_party/Matcha-TTS", | |
| ]) | |
| from cosyvoice.cli.cosyvoice import CosyVoice2 # noqa: E402 | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # helpers | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def _bytes_to_tensor(wav_bytes: bytes) -> torch.Tensor: | |
| """ | |
| Convert int16 littleβendian PCM bytes β torch.FloatTensor in range [β1,1] | |
| """ | |
| speech = torch.from_numpy( | |
| np.frombuffer(wav_bytes, dtype=np.int16) | |
| ).unsqueeze(0).float() / (2 ** 15) | |
| return speech # [1,β―T] | |
| def _yield_audio(model_output): | |
| """ | |
| Generator that converts CosyVoice output β protobuf Response messages. | |
| """ | |
| for seg in model_output: | |
| pcm16 = (seg["tts_speech"].numpy() * (2 ** 15)).astype(np.int16) | |
| resp = cosyvoice_pb2.Response(tts_audio=pcm16.tobytes()) | |
| yield resp | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # gRPC service | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer): | |
| def __init__(self, args): | |
| # try CosyVoice2 first (preferred runtime: TRT / FP16) | |
| try: | |
| self.cosyvoice = CosyVoice2(args.model_dir, | |
| load_jit=False, | |
| load_trt=True, | |
| fp16=True) | |
| logging.info("Loaded CosyVoice2 (TRT / FP16).") | |
| except Exception: | |
| raise TypeError("No valid CosyVoice model found!") | |
| # --------------------------------------------------------------------- | |
| # single biβdi streaming RPC | |
| # --------------------------------------------------------------------- | |
| def Inference(self, request, context): | |
| """Route to the correct model call based on the oneof field present.""" | |
| # 1. Supervised fineβtuning | |
| if request.HasField("sft_request"): | |
| logging.info("Received SFT inference request") | |
| mo = self.cosyvoice.inference_sft( | |
| request.sft_request.tts_text, | |
| request.sft_request.spk_id | |
| ) | |
| yield from _yield_audio(mo) | |
| return | |
| # 2. Zeroβshot speaker cloning (bytes OR S3 URL) | |
| if request.HasField("zero_shot_request"): | |
| logging.info("Received zeroβshot inference request") | |
| zr = request.zero_shot_request | |
| tmp_path = None # initialise so we can delete later | |
| try: | |
| # βββββ determine payload type ββββββββββββββββββββββββββββββββββββββ | |
| if zr.prompt_audio.startswith(b'http'): | |
| # ββ remote URL ββ --------------------------------------------- | |
| url = zr.prompt_audio.decode('utfβ8') | |
| logging.info("Downloading prompt audio from %s", url) | |
| resp = requests.get(url, timeout=10) | |
| resp.raise_for_status() | |
| # save to a temp file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| f.write(resp.content) | |
| tmp_path = f.name | |
| # load, monoβise, resample β tensor [1,β―T] | |
| wav, sr = sf.read(tmp_path, dtype="float32") | |
| if wav.ndim > 1: | |
| wav = wav.mean(axis=1) | |
| if sr != 16_000: | |
| wav = torchaudio.functional.resample( | |
| torch.from_numpy(wav).unsqueeze(0), sr, 16_000 | |
| )[0].numpy() | |
| prompt = torch.from_numpy(wav).unsqueeze(0) | |
| else: | |
| # ββ legacy raw PCM bytes ββ ----------------------------------- | |
| prompt = _bytes_to_tensor(zr.prompt_audio) | |
| # βββββ call the model ββββββββββββββββββββββββββββββββββββββββββββββ | |
| speed = getattr(zr, "speed", 1.0) | |
| mo = self.cosyvoice.inference_zero_shot( | |
| zr.tts_text, | |
| zr.prompt_text, | |
| prompt, | |
| stream=False, | |
| speed=speed, | |
| ) | |
| finally: | |
| # clean up any temporary file we created | |
| if tmp_path and os.path.exists(tmp_path): | |
| try: | |
| os.remove(tmp_path) | |
| except Exception as e: | |
| logging.warning("Could not remove temp file %s: %s", tmp_path, e) | |
| yield from _yield_audio(mo) | |
| return | |
| # 3. Crossβlingual | |
| if request.HasField("cross_lingual_request"): | |
| logging.info("Received crossβlingual inference request") | |
| cr = request.cross_lingual_request | |
| tmp_path = None | |
| try: | |
| if cr.prompt_audio.startswith(b'http'): # S3 URL case | |
| url = cr.prompt_audio.decode('utfβ8') | |
| logging.info("Downloading crossβlingual prompt from %s", url) | |
| resp = requests.get(url, timeout=10) | |
| resp.raise_for_status() | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| f.write(resp.content) | |
| tmp_path = f.name | |
| wav, sr = sf.read(tmp_path, dtype='float32') | |
| if wav.ndim > 1: | |
| wav = wav.mean(axis=1) | |
| if sr != 16_000: | |
| wav = torchaudio.functional.resample( | |
| torch.from_numpy(wav).unsqueeze(0), sr, 16_000 | |
| )[0].numpy() | |
| prompt = torch.from_numpy(wav).unsqueeze(0) | |
| else: # legacy raw bytes | |
| prompt = _bytes_to_tensor(cr.prompt_audio) | |
| mo = self.cosyvoice.inference_cross_lingual( | |
| cr.tts_text, | |
| prompt | |
| ) | |
| finally: | |
| if tmp_path and os.path.exists(tmp_path): | |
| try: | |
| os.remove(tmp_path) | |
| except Exception as e: | |
| logging.warning("Could not remove temp file %s: %s", | |
| tmp_path, e) | |
| yield from _yield_audio(mo) | |
| return | |
| # 4. InstructionβTTS (two flavours) | |
| if request.HasField("instruct_request"): | |
| ir = request.instruct_request | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 4βa) instructβ2 (has prompt_audio β bytes OR S3 URL) | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| if ir.HasField("prompt_audio"): | |
| logging.info("Received instructβ2 inference request") | |
| tmp_path = None | |
| try: | |
| if ir.prompt_audio.startswith(b'http'): | |
| # treat as URL, download then load | |
| url = ir.prompt_audio.decode('utfβ8') | |
| logging.info("Downloading prompt audio from %s", url) | |
| resp = requests.get(url, timeout=10) | |
| resp.raise_for_status() | |
| with tempfile.NamedTemporaryFile(delete=False, | |
| suffix=".wav") as f: | |
| f.write(resp.content) | |
| tmp_path = f.name | |
| wav, sr = sf.read(tmp_path, dtype='float32') | |
| if wav.ndim > 1: | |
| wav = wav.mean(axis=1) | |
| if sr != 16_000: | |
| wav = torchaudio.functional.resample( | |
| torch.from_numpy(wav).unsqueeze(0), sr, 16_000 | |
| )[0].numpy() | |
| prompt = torch.from_numpy(wav).unsqueeze(0) | |
| else: | |
| # legacy rawβbytes payload | |
| prompt = _bytes_to_tensor(ir.prompt_audio) | |
| speed = getattr(ir, "speed", 1.0) | |
| mo = self.cosyvoice.inference_instruct2( | |
| ir.tts_text, | |
| ir.instruct_text, | |
| prompt, | |
| stream=False, | |
| speed=speed | |
| ) | |
| finally: | |
| if tmp_path and os.path.exists(tmp_path): | |
| try: | |
| os.remove(tmp_path) | |
| except Exception as e: | |
| logging.warning("Could not remove temp file %s: %s", | |
| tmp_path, e) | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 4βb) classic instruct (speakerβID, no prompt audio) | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| else: | |
| logging.info("Received instruct inference request") | |
| mo = self.cosyvoice.inference_instruct( | |
| ir.tts_text, | |
| ir.spk_id, | |
| ir.instruct_text | |
| ) | |
| yield from _yield_audio(mo) | |
| return | |
| # unknown request type | |
| context.abort(grpc.StatusCode.INVALID_ARGUMENT, | |
| "Unsupported request type in oneof field.") | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # entryβpoint | |
| # ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def serve(args): | |
| server = grpc.server( | |
| futures.ThreadPoolExecutor(max_workers=args.max_conc), | |
| maximum_concurrent_rpcs=args.max_conc | |
| ) | |
| cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server( | |
| CosyVoiceServiceImpl(args), server | |
| ) | |
| server.add_insecure_port(f"0.0.0.0:{args.port}") | |
| server.start() | |
| logging.info("CosyVoice gRPC server listening on 0.0.0.0:%d", args.port) | |
| server.wait_for_termination() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--port", type=int, default=8000) | |
| parser.add_argument("--max_conc", type=int, default=4, | |
| help="maximum concurrent requests / threads") | |
| parser.add_argument("--model_dir", type=str, | |
| default="pretrained_models/CosyVoice2-0.5B", | |
| help="local path or ModelScope repo id") | |
| serve(parser.parse_args()) |