|
|
import numpy as np
|
|
|
import torch
|
|
|
from torch import nn as nn
|
|
|
from torchvision.ops.misc import FrozenBatchNorm2d
|
|
|
import logging
|
|
|
from tqdm import tqdm
|
|
|
import random
|
|
|
import json
|
|
|
import os
|
|
|
import pathlib
|
|
|
|
|
|
|
|
|
dataset_split = {
|
|
|
"audiocaps": ["train", "valid", "test"],
|
|
|
"audioset": ["balanced_train", "unbalanced_train", "eval"],
|
|
|
"BBCSoundEffects": ["train", "test"],
|
|
|
"Clotho": ["train", "test", "valid"],
|
|
|
"free_to_use_sounds": ["train", "test"],
|
|
|
"paramount_motion": ["train", "test"],
|
|
|
"sonniss_game_effects": ["train", "test"],
|
|
|
"wesoundeffects": ["train", "test"],
|
|
|
"MACS": ["train", "test"],
|
|
|
"freesound": ["train", "test"],
|
|
|
"FSD50K": ["train", "test", "valid"],
|
|
|
"fsd50k_class_label": ["train", "test", "valid"],
|
|
|
"esc50": ["train", "test"],
|
|
|
"audiostock": ["train", "test"],
|
|
|
"freesound_no_overlap_noesc50": ["train", "test"],
|
|
|
"epidemic_sound_effects": ["train", "test"],
|
|
|
"VGGSound": ["train", "test"],
|
|
|
"urbansound8k_class_label": ["train", "test"],
|
|
|
"audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
|
|
|
"epidemic_sound_effects_t5": ["train", "test"],
|
|
|
"WavText5K": ["train", "test"],
|
|
|
"esc50_no_overlap": ["train", "test"],
|
|
|
"usd8k_no_overlap": ["train", "test"],
|
|
|
"fsd50k_200_class_label": ["train", "test", "valid"],
|
|
|
}
|
|
|
|
|
|
|
|
|
def freeze_batch_norm_2d(module, module_match={}, name=""):
|
|
|
"""
|
|
|
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
|
|
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
|
|
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
|
|
|
|
|
Args:
|
|
|
module (torch.nn.Module): Any PyTorch module.
|
|
|
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
|
|
name (str): Full module name (prefix)
|
|
|
|
|
|
Returns:
|
|
|
torch.nn.Module: Resulting module
|
|
|
|
|
|
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
|
|
"""
|
|
|
res = module
|
|
|
is_match = True
|
|
|
if module_match:
|
|
|
is_match = name in module_match
|
|
|
if is_match and isinstance(
|
|
|
module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
|
|
|
):
|
|
|
res = FrozenBatchNorm2d(module.num_features)
|
|
|
res.num_features = module.num_features
|
|
|
res.affine = module.affine
|
|
|
if module.affine:
|
|
|
res.weight.data = module.weight.data.clone().detach()
|
|
|
res.bias.data = module.bias.data.clone().detach()
|
|
|
res.running_mean.data = module.running_mean.data
|
|
|
res.running_var.data = module.running_var.data
|
|
|
res.eps = module.eps
|
|
|
else:
|
|
|
for child_name, child in module.named_children():
|
|
|
full_child_name = ".".join([name, child_name]) if name else child_name
|
|
|
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
|
|
if new_child is not child:
|
|
|
res.add_module(child_name, new_child)
|
|
|
return res
|
|
|
|
|
|
|
|
|
def exist(dataset_name, dataset_type):
|
|
|
"""
|
|
|
Check if dataset exists
|
|
|
"""
|
|
|
if dataset_type in dataset_split[dataset_name]:
|
|
|
return True
|
|
|
else:
|
|
|
return False
|
|
|
|
|
|
|
|
|
def get_tar_path_from_dataset_name(
|
|
|
dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None
|
|
|
):
|
|
|
"""
|
|
|
Get tar path from dataset name and type
|
|
|
"""
|
|
|
output = []
|
|
|
for n in dataset_names:
|
|
|
if full_dataset is not None and n in full_dataset:
|
|
|
current_dataset_types = dataset_split[n]
|
|
|
else:
|
|
|
current_dataset_types = dataset_types
|
|
|
for s in current_dataset_types:
|
|
|
tmp = []
|
|
|
if islocal:
|
|
|
sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
|
|
|
if not os.path.exists(sizefilepath_):
|
|
|
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
|
|
|
else:
|
|
|
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
|
|
|
if not os.path.exists(sizefilepath_):
|
|
|
continue
|
|
|
sizes = json.load(open(sizefilepath_, "r"))
|
|
|
for k in sizes.keys():
|
|
|
if islocal:
|
|
|
tmp.append(f"{dataset_path}/{n}/{s}/{k}")
|
|
|
else:
|
|
|
tmp.append(
|
|
|
f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
|
|
|
)
|
|
|
if proportion != 1:
|
|
|
tmp = random.sample(tmp, int(proportion * len(tmp)))
|
|
|
output.append(tmp)
|
|
|
return sum(output, [])
|
|
|
|
|
|
|
|
|
def get_tar_path_from_txts(txt_path, islocal, proportion=1):
|
|
|
"""
|
|
|
Get tar path from txt path
|
|
|
"""
|
|
|
if isinstance(txt_path, (list, tuple)):
|
|
|
return sum(
|
|
|
[
|
|
|
get_tar_path_from_txts(
|
|
|
txt_path[i], islocal=islocal, proportion=proportion
|
|
|
)
|
|
|
for i in range(len(txt_path))
|
|
|
],
|
|
|
[],
|
|
|
)
|
|
|
if isinstance(txt_path, str):
|
|
|
with open(txt_path) as f:
|
|
|
lines = f.readlines()
|
|
|
if islocal:
|
|
|
lines = [
|
|
|
lines[i]
|
|
|
.split("\n")[0]
|
|
|
.replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
|
|
|
for i in range(len(lines))
|
|
|
]
|
|
|
else:
|
|
|
lines = [
|
|
|
lines[i].split("\n")[0].replace(".tar", ".tar -")
|
|
|
for i in range(len(lines))
|
|
|
]
|
|
|
if proportion != 1:
|
|
|
print("Sampling tars with proportion of {}".format(proportion))
|
|
|
lines = random.sample(lines, int(proportion * len(lines)))
|
|
|
return lines
|
|
|
|
|
|
|
|
|
def get_mix_lambda(mixup_alpha, batch_size):
|
|
|
mixup_lambdas = [
|
|
|
np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
|
|
|
]
|
|
|
return np.array(mixup_lambdas).astype(np.float32)
|
|
|
|
|
|
|
|
|
def do_mixup(x, mixup_lambda):
|
|
|
"""
|
|
|
Args:
|
|
|
x: (batch_size , ...)
|
|
|
mixup_lambda: (batch_size,)
|
|
|
Returns:
|
|
|
out: (batch_size, ...)
|
|
|
"""
|
|
|
out = (
|
|
|
x.transpose(0, -1) * mixup_lambda
|
|
|
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
|
|
|
).transpose(0, -1)
|
|
|
return out
|
|
|
|
|
|
|
|
|
def interpolate(x, ratio):
|
|
|
"""Interpolate data in time domain. This is used to compensate the
|
|
|
resolution reduction in downsampling of a CNN.
|
|
|
|
|
|
Args:
|
|
|
x: (batch_size, time_steps, classes_num)
|
|
|
ratio: int, ratio to interpolate
|
|
|
Returns:
|
|
|
upsampled: (batch_size, time_steps * ratio, classes_num)
|
|
|
"""
|
|
|
(batch_size, time_steps, classes_num) = x.shape
|
|
|
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
|
|
|
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
|
|
|
return upsampled
|
|
|
|
|
|
|
|
|
def pad_framewise_output(framewise_output, frames_num):
|
|
|
"""Pad framewise_output to the same length as input frames. The pad value
|
|
|
is the same as the value of the last frame.
|
|
|
Args:
|
|
|
framewise_output: (batch_size, frames_num, classes_num)
|
|
|
frames_num: int, number of frames to pad
|
|
|
Outputs:
|
|
|
output: (batch_size, frames_num, classes_num)
|
|
|
"""
|
|
|
pad = framewise_output[:, -1:, :].repeat(
|
|
|
1, frames_num - framewise_output.shape[1], 1
|
|
|
)
|
|
|
"""tensor for padding"""
|
|
|
|
|
|
output = torch.cat((framewise_output, pad), dim=1)
|
|
|
"""(batch_size, frames_num, classes_num)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_to_dict(s, o_={}):
|
|
|
sp = s.split(": ")
|
|
|
o_.update({sp[0]: float(sp[1])})
|
|
|
return o_
|
|
|
|
|
|
|
|
|
def get_data_from_log(txt_path):
|
|
|
"""
|
|
|
Output dictionary from out.txt log file
|
|
|
"""
|
|
|
with open(txt_path) as f:
|
|
|
lines = f.readlines()
|
|
|
val_data = {}
|
|
|
train_data = {}
|
|
|
train_losses = []
|
|
|
train_losses_epoch = []
|
|
|
for i in range(len(lines)):
|
|
|
if "| INFO |" in lines[i]:
|
|
|
if "Eval Epoch" in lines[i]:
|
|
|
if "val_loss" in lines[i]:
|
|
|
|
|
|
line = lines[i].split("Eval Epoch: ")[-1]
|
|
|
num_epoch = int(line.split(" ")[0].split(" ")[0])
|
|
|
d = {
|
|
|
line.split(" ")[0]
|
|
|
.split(" ")[1]
|
|
|
.replace(":", ""): float(line.split(" ")[0].split(" ")[-1])
|
|
|
}
|
|
|
for i in range(1, len(line.split(" "))):
|
|
|
d = save_to_dict(line.split(" ")[i], d)
|
|
|
val_data[num_epoch] = d
|
|
|
elif "Train Epoch" in lines[i]:
|
|
|
num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
|
|
|
loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
|
|
|
train_losses.append(loss)
|
|
|
train_losses_epoch.append(num_epoch)
|
|
|
for i in range(len(train_losses)):
|
|
|
train_data[i] = {
|
|
|
"num_epoch": train_losses_epoch[i],
|
|
|
"train_loss": train_losses[i],
|
|
|
}
|
|
|
return train_data, val_data
|
|
|
|
|
|
|
|
|
def save_p(obj, filename):
|
|
|
import pickle
|
|
|
|
|
|
try:
|
|
|
from deepdiff import DeepDiff
|
|
|
except:
|
|
|
os.system("pip install deepdiff")
|
|
|
from deepdiff import DeepDiff
|
|
|
with open(filename, "wb") as file:
|
|
|
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
with open(filename, "rb") as file:
|
|
|
z = pickle.load(file)
|
|
|
assert (
|
|
|
DeepDiff(obj, z, ignore_string_case=True) == {}
|
|
|
), "there is something wrong with the saving process"
|
|
|
return
|
|
|
|
|
|
|
|
|
def load_p(filename):
|
|
|
import pickle
|
|
|
|
|
|
with open(filename, "rb") as file:
|
|
|
z = pickle.load(file)
|
|
|
return z
|
|
|
|
|
|
|
|
|
def save_json(data, name="data.json"):
|
|
|
import json
|
|
|
|
|
|
with open(name, "w") as fp:
|
|
|
json.dump(data, fp)
|
|
|
return
|
|
|
|
|
|
|
|
|
def load_json(name):
|
|
|
import json
|
|
|
|
|
|
with open(name, "r") as fp:
|
|
|
data = json.load(fp)
|
|
|
return data
|
|
|
|
|
|
|
|
|
def load_class_label(path):
|
|
|
|
|
|
|
|
|
out = None
|
|
|
if path is not None:
|
|
|
if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
|
|
|
out = load_p(path)
|
|
|
elif pathlib.Path(path).suffix in [".json", ".txt"]:
|
|
|
out = load_json(path)
|
|
|
elif pathlib.Path(path).suffix in [".npy", ".npz"]:
|
|
|
out = np.load(path)
|
|
|
elif pathlib.Path(path).suffix in [".csv"]:
|
|
|
import pandas as pd
|
|
|
|
|
|
out = pd.read_csv(path)
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from torch import optim
|
|
|
|
|
|
|
|
|
def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
|
|
|
if optimizer_name.lower() == "adamw":
|
|
|
optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps)
|
|
|
elif optimizer_name.lower() == "sgd":
|
|
|
optimizer = optim.SGD(params, lr=lr, momentum=momentum)
|
|
|
elif optimizer_name.lower() == "adam":
|
|
|
optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps)
|
|
|
else:
|
|
|
raise ValueError("optimizer name is not correct")
|
|
|
return optimizer
|
|
|
|