Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,364 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from audiosr import super_resolution, build_model
|
| 3 |
import torch
|
| 4 |
import gc # free up memory
|
| 5 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
@spaces.GPU(duration=300)
|
| 8 |
def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
|
@@ -26,12 +382,79 @@ def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
|
| 26 |
ddim_steps=ddim_steps
|
| 27 |
)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
if torch.cuda.is_avaible():
|
| 30 |
torch.cuda.empty_cache()
|
| 31 |
|
| 32 |
gc.collect()
|
| 33 |
|
| 34 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
iface = gr.Interface(
|
| 37 |
fn=inference,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
import gc # free up memory
|
| 4 |
import spaces
|
| 5 |
+
import gc
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
+
import numpy as np
|
| 9 |
+
from scipy.signal.windows import hann
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
import torch
|
| 12 |
+
import librosa
|
| 13 |
+
from audiosr import build_model, super_resolution
|
| 14 |
+
from scipy import signal
|
| 15 |
+
import pyloudnorm as pyln
|
| 16 |
+
import tempfile
|
| 17 |
+
|
| 18 |
+
class AudioUpscaler:
|
| 19 |
+
"""
|
| 20 |
+
Upscales audio using the AudioSR model.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
def __init__(self, model_name="basic", device="auto"):
|
| 24 |
+
"""
|
| 25 |
+
Initializes the AudioUpscaler.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
model_name (str, optional): Name of the AudioSR model to use. Defaults to "basic".
|
| 29 |
+
device (str, optional): Device to use for inference. Defaults to "auto".
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
self.model_name = model_name
|
| 33 |
+
self.device = device
|
| 34 |
+
self.sr = 48000
|
| 35 |
+
self.audiosr = None # Model will be loaded in setup()
|
| 36 |
+
|
| 37 |
+
def setup(self):
|
| 38 |
+
"""
|
| 39 |
+
Loads the AudioSR model.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
print("Loading Model...")
|
| 43 |
+
self.audiosr = build_model(model_name=self.model_name, device=self.device)
|
| 44 |
+
print("Model loaded!")
|
| 45 |
+
|
| 46 |
+
def _match_array_shapes(self, array_1: np.ndarray, array_2: np.ndarray):
|
| 47 |
+
"""
|
| 48 |
+
Matches the shapes of two arrays by padding the shorter one with zeros.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
array_1 (np.ndarray): First array.
|
| 52 |
+
array_2 (np.ndarray): Second array.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
np.ndarray: The first array with a matching shape to the second array.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
if (len(array_1.shape) == 1) & (len(array_2.shape) == 1):
|
| 59 |
+
if array_1.shape[0] > array_2.shape[0]:
|
| 60 |
+
array_1 = array_1[: array_2.shape[0]]
|
| 61 |
+
elif array_1.shape[0] < array_2.shape[0]:
|
| 62 |
+
array_1 = np.pad(
|
| 63 |
+
array_1,
|
| 64 |
+
((array_2.shape[0] - array_1.shape[0], 0)),
|
| 65 |
+
"constant",
|
| 66 |
+
constant_values=0,
|
| 67 |
+
)
|
| 68 |
+
else:
|
| 69 |
+
if array_1.shape[1] > array_2.shape[1]:
|
| 70 |
+
array_1 = array_1[:, : array_2.shape[1]]
|
| 71 |
+
elif array_1.shape[1] < array_2.shape[1]:
|
| 72 |
+
padding = array_2.shape[1] - array_1.shape[1]
|
| 73 |
+
array_1 = np.pad(
|
| 74 |
+
array_1, ((0, 0), (0, padding)), "constant", constant_values=0
|
| 75 |
+
)
|
| 76 |
+
return array_1
|
| 77 |
+
|
| 78 |
+
def _lr_filter(
|
| 79 |
+
self, audio, cutoff, filter_type, order=12, sr=48000
|
| 80 |
+
):
|
| 81 |
+
"""
|
| 82 |
+
Applies a low-pass or high-pass filter to the audio.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
audio (np.ndarray): Audio data.
|
| 86 |
+
cutoff (int): Cutoff frequency.
|
| 87 |
+
filter_type (str): Filter type ("lowpass" or "highpass").
|
| 88 |
+
order (int, optional): Filter order. Defaults to 12.
|
| 89 |
+
sr (int, optional): Sample rate. Defaults to 48000.
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
np.ndarray: Filtered audio data.
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
audio = audio.T
|
| 96 |
+
nyquist = 0.5 * sr
|
| 97 |
+
normal_cutoff = cutoff / nyquist
|
| 98 |
+
b, a = signal.butter(
|
| 99 |
+
order // 2, normal_cutoff, btype=filter_type, analog=False
|
| 100 |
+
)
|
| 101 |
+
sos = signal.tf2sos(b, a)
|
| 102 |
+
filtered_audio = signal.sosfiltfilt(sos, audio)
|
| 103 |
+
return filtered_audio.T
|
| 104 |
+
|
| 105 |
+
def _process_audio(
|
| 106 |
+
self,
|
| 107 |
+
input_file,
|
| 108 |
+
chunk_size=5.12,
|
| 109 |
+
overlap=0.1,
|
| 110 |
+
seed=None,
|
| 111 |
+
guidance_scale=3.5,
|
| 112 |
+
ddim_steps=50,
|
| 113 |
+
multiband_ensemble=True,
|
| 114 |
+
input_cutoff=14000,
|
| 115 |
+
):
|
| 116 |
+
"""
|
| 117 |
+
Processes the audio in chunks and performs upsampling.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
input_file (str): Path to the input audio file.
|
| 121 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 5.12.
|
| 122 |
+
overlap (float, optional): Overlap between chunks in seconds. Defaults to 0.1.
|
| 123 |
+
seed (int, optional): Random seed. Defaults to None.
|
| 124 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
| 125 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
|
| 126 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
| 127 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
np.ndarray: Upsampled audio data.
|
| 131 |
+
"""
|
| 132 |
+
|
| 133 |
+
audio, sr = librosa.load(input_file, sr=input_cutoff * 2, mono=False)
|
| 134 |
+
audio = audio.T
|
| 135 |
+
sr = input_cutoff * 2
|
| 136 |
+
|
| 137 |
+
is_stereo = len(audio.shape) == 2
|
| 138 |
+
if is_stereo:
|
| 139 |
+
audio_ch1, audio_ch2 = audio[:, 0], audio[:, 1]
|
| 140 |
+
else:
|
| 141 |
+
audio_ch1 = audio
|
| 142 |
+
|
| 143 |
+
chunk_samples = int(chunk_size * sr)
|
| 144 |
+
overlap_samples = int(overlap * chunk_samples)
|
| 145 |
+
|
| 146 |
+
output_chunk_samples = int(chunk_size * self.sr)
|
| 147 |
+
output_overlap_samples = int(overlap * output_chunk_samples)
|
| 148 |
+
enable_overlap = True if overlap > 0 else False
|
| 149 |
+
|
| 150 |
+
def process_chunks(audio):
|
| 151 |
+
chunks = []
|
| 152 |
+
original_lengths = []
|
| 153 |
+
start = 0
|
| 154 |
+
while start < len(audio):
|
| 155 |
+
end = min(start + chunk_samples, len(audio))
|
| 156 |
+
chunk = audio[start:end]
|
| 157 |
+
if len(chunk) < chunk_samples:
|
| 158 |
+
original_lengths.append(len(chunk))
|
| 159 |
+
pad = np.zeros(chunk_samples - len(chunk))
|
| 160 |
+
chunk = np.concatenate([chunk, pad])
|
| 161 |
+
else:
|
| 162 |
+
original_lengths.append(chunk_samples)
|
| 163 |
+
chunks.append(chunk)
|
| 164 |
+
start += (
|
| 165 |
+
chunk_samples - overlap_samples
|
| 166 |
+
if enable_overlap
|
| 167 |
+
else chunk_samples
|
| 168 |
+
)
|
| 169 |
+
return chunks, original_lengths
|
| 170 |
+
|
| 171 |
+
chunks_ch1, original_lengths_ch1 = process_chunks(audio_ch1)
|
| 172 |
+
if is_stereo:
|
| 173 |
+
chunks_ch2, original_lengths_ch2 = process_chunks(audio_ch2)
|
| 174 |
+
|
| 175 |
+
sample_rate_ratio = self.sr / sr
|
| 176 |
+
total_length = (
|
| 177 |
+
len(chunks_ch1) * output_chunk_samples
|
| 178 |
+
- (len(chunks_ch1) - 1)
|
| 179 |
+
* (output_overlap_samples if enable_overlap else 0)
|
| 180 |
+
)
|
| 181 |
+
reconstructed_ch1 = np.zeros((1, total_length))
|
| 182 |
+
|
| 183 |
+
meter_before = pyln.Meter(sr)
|
| 184 |
+
meter_after = pyln.Meter(self.sr)
|
| 185 |
+
|
| 186 |
+
for i, chunk in enumerate(chunks_ch1):
|
| 187 |
+
loudness_before = meter_before.integrated_loudness(chunk)
|
| 188 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
|
| 189 |
+
sf.write(temp_wav.name, chunk, sr)
|
| 190 |
+
|
| 191 |
+
out_chunk = super_resolution(
|
| 192 |
+
self.audiosr,
|
| 193 |
+
temp_wav.name,
|
| 194 |
+
seed=seed,
|
| 195 |
+
guidance_scale=guidance_scale,
|
| 196 |
+
ddim_steps=ddim_steps,
|
| 197 |
+
latent_t_per_second=12.8,
|
| 198 |
+
)
|
| 199 |
+
out_chunk = out_chunk[0]
|
| 200 |
+
num_samples_to_keep = int(
|
| 201 |
+
original_lengths_ch1[i] * sample_rate_ratio
|
| 202 |
+
)
|
| 203 |
+
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
|
| 204 |
+
|
| 205 |
+
loudness_after = meter_after.integrated_loudness(out_chunk)
|
| 206 |
+
out_chunk = pyln.normalize.loudness(
|
| 207 |
+
out_chunk, loudness_after, loudness_before
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if enable_overlap:
|
| 211 |
+
actual_overlap_samples = min(
|
| 212 |
+
output_overlap_samples, num_samples_to_keep
|
| 213 |
+
)
|
| 214 |
+
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
|
| 215 |
+
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
|
| 216 |
+
|
| 217 |
+
if i == 0:
|
| 218 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
| 219 |
+
elif i < len(chunks_ch1) - 1:
|
| 220 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
| 221 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
| 222 |
+
else:
|
| 223 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
| 224 |
+
|
| 225 |
+
start = i * (
|
| 226 |
+
output_chunk_samples - output_overlap_samples
|
| 227 |
+
if enable_overlap
|
| 228 |
+
else output_chunk_samples
|
| 229 |
+
)
|
| 230 |
+
end = start + out_chunk.shape[0]
|
| 231 |
+
reconstructed_ch1[0, start:end] += out_chunk.flatten()
|
| 232 |
+
|
| 233 |
+
if is_stereo:
|
| 234 |
+
reconstructed_ch2 = np.zeros((1, total_length))
|
| 235 |
+
for i, chunk in enumerate(chunks_ch2):
|
| 236 |
+
loudness_before = meter_before.integrated_loudness(chunk)
|
| 237 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
|
| 238 |
+
sf.write(temp_wav.name, chunk, sr)
|
| 239 |
+
|
| 240 |
+
out_chunk = super_resolution(
|
| 241 |
+
self.audiosr,
|
| 242 |
+
temp_wav.name,
|
| 243 |
+
seed=seed,
|
| 244 |
+
guidance_scale=guidance_scale,
|
| 245 |
+
ddim_steps=ddim_steps,
|
| 246 |
+
latent_t_per_second=12.8,
|
| 247 |
+
)
|
| 248 |
+
out_chunk = out_chunk[0]
|
| 249 |
+
num_samples_to_keep = int(
|
| 250 |
+
original_lengths_ch2[i] * sample_rate_ratio
|
| 251 |
+
)
|
| 252 |
+
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
|
| 253 |
+
|
| 254 |
+
loudness_after = meter_after.integrated_loudness(out_chunk)
|
| 255 |
+
out_chunk = pyln.normalize.loudness(
|
| 256 |
+
out_chunk, loudness_after, loudness_before
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
if enable_overlap:
|
| 260 |
+
actual_overlap_samples = min(
|
| 261 |
+
output_overlap_samples, num_samples_to_keep
|
| 262 |
+
)
|
| 263 |
+
fade_out = np.linspace(1.0, 0.0, actual_overlap_samples)
|
| 264 |
+
fade_in = np.linspace(0.0, 1.0, actual_overlap_samples)
|
| 265 |
+
|
| 266 |
+
if i == 0:
|
| 267 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
| 268 |
+
elif i < len(chunks_ch1) - 1:
|
| 269 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
| 270 |
+
out_chunk[-actual_overlap_samples:] *= fade_out
|
| 271 |
+
else:
|
| 272 |
+
out_chunk[:actual_overlap_samples] *= fade_in
|
| 273 |
+
|
| 274 |
+
start = i * (
|
| 275 |
+
output_chunk_samples - output_overlap_samples
|
| 276 |
+
if enable_overlap
|
| 277 |
+
else output_chunk_samples
|
| 278 |
+
)
|
| 279 |
+
end = start + out_chunk.shape[0]
|
| 280 |
+
reconstructed_ch2[0, start:end] += out_chunk.flatten()
|
| 281 |
+
|
| 282 |
+
reconstructed_audio = np.stack(
|
| 283 |
+
[reconstructed_ch1, reconstructed_ch2], axis=-1
|
| 284 |
+
)
|
| 285 |
+
else:
|
| 286 |
+
reconstructed_audio = reconstructed_ch1
|
| 287 |
+
|
| 288 |
+
if multiband_ensemble:
|
| 289 |
+
low, _ = librosa.load(input_file, sr=48000, mono=False)
|
| 290 |
+
output = self._match_array_shapes(
|
| 291 |
+
reconstructed_audio[0].T, low
|
| 292 |
+
)
|
| 293 |
+
crossover_freq = input_cutoff - 1000
|
| 294 |
+
low = self._lr_filter(
|
| 295 |
+
low.T, crossover_freq, "lowpass", order=10
|
| 296 |
+
)
|
| 297 |
+
high = self._lr_filter(
|
| 298 |
+
output.T, crossover_freq, "highpass", order=10
|
| 299 |
+
)
|
| 300 |
+
high = self._lr_filter(
|
| 301 |
+
high, 23000, "lowpass", order=2
|
| 302 |
+
)
|
| 303 |
+
output = low + high
|
| 304 |
+
else:
|
| 305 |
+
output = reconstructed_audio[0]
|
| 306 |
+
|
| 307 |
+
return output
|
| 308 |
+
|
| 309 |
+
def predict(
|
| 310 |
+
self,
|
| 311 |
+
input_file,
|
| 312 |
+
output_folder,
|
| 313 |
+
ddim_steps=50,
|
| 314 |
+
guidance_scale=3.5,
|
| 315 |
+
overlap=0.04,
|
| 316 |
+
chunk_size=10.24,
|
| 317 |
+
seed=None,
|
| 318 |
+
multiband_ensemble=True,
|
| 319 |
+
input_cutoff=14000,
|
| 320 |
+
):
|
| 321 |
+
"""
|
| 322 |
+
Upscales the audio and saves the result.
|
| 323 |
+
|
| 324 |
+
Args:
|
| 325 |
+
input_file (str): Path to the input audio file.
|
| 326 |
+
output_folder (str): Path to the output folder.
|
| 327 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 50.
|
| 328 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
| 329 |
+
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
|
| 330 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
|
| 331 |
+
seed (int, optional): Random seed. Defaults to None.
|
| 332 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
| 333 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
| 334 |
+
"""
|
| 335 |
+
if seed == 0:
|
| 336 |
+
seed = random.randint(0, 2**32 - 1)
|
| 337 |
+
|
| 338 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 339 |
+
waveform = self._process_audio(
|
| 340 |
+
input_file,
|
| 341 |
+
chunk_size=chunk_size,
|
| 342 |
+
overlap=overlap,
|
| 343 |
+
seed=seed,
|
| 344 |
+
guidance_scale=guidance_scale,
|
| 345 |
+
ddim_steps=ddim_steps,
|
| 346 |
+
multiband_ensemble=multiband_ensemble,
|
| 347 |
+
input_cutoff=input_cutoff,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
filename = os.path.splitext(os.path.basename(input_file))[0]
|
| 351 |
+
output_file = f"{output_folder}/SR_{filename}.wav"
|
| 352 |
+
sf.write(output_file, data=waveform, samplerate=48000, subtype="PCM_16")
|
| 353 |
+
print(f"File created: {output_file}")
|
| 354 |
+
|
| 355 |
+
# Cleanup
|
| 356 |
+
del waveform
|
| 357 |
+
gc.collect()
|
| 358 |
+
torch.cuda.empty_cache()
|
| 359 |
+
return output_file
|
| 360 |
+
|
| 361 |
+
|
| 362 |
|
| 363 |
@spaces.GPU(duration=300)
|
| 364 |
def inference(audio_file, model_name, guidance_scale, ddim_steps, seed):
|
|
|
|
| 382 |
ddim_steps=ddim_steps
|
| 383 |
)
|
| 384 |
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
return (48000, waveform)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def upscale_audio(
|
| 391 |
+
input_file,
|
| 392 |
+
output_folder,
|
| 393 |
+
ddim_steps=20,
|
| 394 |
+
guidance_scale=3.5,
|
| 395 |
+
overlap=0.04,
|
| 396 |
+
chunk_size=10.24,
|
| 397 |
+
seed=0,
|
| 398 |
+
multiband_ensemble=True,
|
| 399 |
+
input_cutoff=14000,
|
| 400 |
+
):
|
| 401 |
+
"""
|
| 402 |
+
Upscales the audio using the AudioSR model.
|
| 403 |
+
|
| 404 |
+
Args:
|
| 405 |
+
input_file (str): Path to the input audio file.
|
| 406 |
+
output_folder (str): Path to the output folder.
|
| 407 |
+
ddim_steps (int, optional): Number of inference steps. Defaults to 20.
|
| 408 |
+
guidance_scale (float, optional): Scale for classifier-free guidance. Defaults to 3.5.
|
| 409 |
+
overlap (float, optional): Overlap between chunks. Defaults to 0.04.
|
| 410 |
+
chunk_size (float, optional): Chunk size in seconds. Defaults to 10.24.
|
| 411 |
+
seed (int, optional): Random seed. Defaults to 0.
|
| 412 |
+
multiband_ensemble (bool, optional): Whether to use multiband ensemble. Defaults to True.
|
| 413 |
+
input_cutoff (int, optional): Input cutoff frequency for multiband ensemble. Defaults to 14000.
|
| 414 |
+
|
| 415 |
+
Returns:
|
| 416 |
+
tuple: Upscaled audio data and sample rate.
|
| 417 |
+
"""
|
| 418 |
+
upscaler = AudioUpscaler()
|
| 419 |
+
upscaler.setup()
|
| 420 |
+
|
| 421 |
+
output_file = upscaler.predict(
|
| 422 |
+
input_file,
|
| 423 |
+
output_folder,
|
| 424 |
+
ddim_steps=ddim_steps,
|
| 425 |
+
guidance_scale=guidance_scale,
|
| 426 |
+
overlap=overlap,
|
| 427 |
+
chunk_size=chunk_size,
|
| 428 |
+
seed=seed,
|
| 429 |
+
multiband_ensemble=multiband_ensemble,
|
| 430 |
+
input_cutoff=input_cutoff,
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
if torch.cuda.is_avaible():
|
| 434 |
torch.cuda.empty_cache()
|
| 435 |
|
| 436 |
gc.collect()
|
| 437 |
|
| 438 |
+
return output_file
|
| 439 |
+
|
| 440 |
+
os.getcwd()
|
| 441 |
+
gr.Textbox
|
| 442 |
+
|
| 443 |
+
iface = gr.Interface(
|
| 444 |
+
fn=upscale_audio,
|
| 445 |
+
inputs=[
|
| 446 |
+
gr.Audio(type="filepath", label="Input Audio"),
|
| 447 |
+
gr.Textbox(".",label="Out-dir"),
|
| 448 |
+
gr.Slider(10, 500, value=20, step=1, label="DDIM Steps", info="Number of inference steps (quality/speed)"),
|
| 449 |
+
gr.Slider(1.0, 20.0, value=3.5, step=0.1, label="Guidance Scale", info="Guidance scale (creativity/fidelity)"),
|
| 450 |
+
gr.Slider(0.0, 0.5, value=0.04, step=0.01, label="Overlap (s)", info="Overlap between chunks (smooth transitions)"),
|
| 451 |
+
gr.Slider(5.12, 20.48, value=5.12, step=0.64, label="Chunk Size (s)", info="Chunk size (memory/artifact balance)"),
|
| 452 |
+
gr.Number(value=0, precision=0, label="Seed", info="Random seed (0 for random)"),
|
| 453 |
+
gr.Checkbox(label="Multiband Ensemble", value=False, info="Enhance high frequencies"),
|
| 454 |
+
gr.Slider(500, 15000, value=9000, step=500, label="Crossover Frequency (Hz)", info="For multiband processing", visible=True)
|
| 455 |
+
],
|
| 456 |
+
|
| 457 |
+
|
| 458 |
|
| 459 |
iface = gr.Interface(
|
| 460 |
fn=inference,
|