Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| import torch | |
| import torchvision.transforms as T | |
| from PIL import Image | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import AutoModel, AutoTokenizer | |
| from threading import Thread | |
| import re | |
| import time | |
| from PIL import Image | |
| import torch | |
| import spaces | |
| import subprocess | |
| import os | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| torch.set_default_device('cuda') | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD) | |
| ]) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def load_image(image_file, input_size=448, max_num=12): | |
| image = Image.open(image_file).convert('RGB') | |
| transform = build_transform(input_size=input_size) | |
| images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(image) for image in images] | |
| pixel_values = torch.stack(pixel_values) | |
| return pixel_values | |
| model = AutoModel.from_pretrained( | |
| "5CD-AI/Vintern-3B-beta", | |
| torch_dtype=torch.bfloat16, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| ).eval().cuda() | |
| tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-3B-beta", trust_remote_code=True, use_fast=False) | |
| def chat(message, history): | |
| print("history",history) | |
| print("message",message) | |
| if len(history) != 0 and len(message["files"]) != 0: | |
| return """Chúng tôi hiện chỉ hổ trợ 1 ảnh ở đầu ngữ cảnh! Vui lòng tạo mới cuộc trò chuyện. | |
| We currently only support one image at the start of the context! Please start a new conversation.""" | |
| if len(history) == 0 and len(message["files"]) != 0: | |
| test_image = message["files"][0]["path"] | |
| pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda() | |
| elif len(history) == 0 and len(message["files"]) == 0: | |
| pixel_values = None | |
| elif history[0][0][0] is not None and os.path.isfile(history[0][0][0]): | |
| test_image = history[0][0][0] | |
| pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda() | |
| else: | |
| pixel_values = None | |
| generation_config = dict(max_new_tokens= 512, do_sample=False, num_beams = 3, repetition_penalty=2.0) | |
| if len(history) == 0: | |
| if pixel_values is not None: | |
| question = '<image>\n'+message["text"] | |
| else: | |
| question = message["text"] | |
| response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) | |
| else: | |
| conv_history = [] | |
| if history[0][0][0] is not None and os.path.isfile(history[0][0][0]): | |
| start_index = 1 | |
| else: | |
| start_index = 0 | |
| for i, chat_pair in enumerate(history[start_index:]): | |
| if i == 0 and start_index == 1: | |
| conv_history.append(tuple(['<image>\n'+chat_pair[0],chat_pair[1]])) | |
| else: | |
| conv_history.append(tuple(chat_pair)) | |
| print("conv_history",conv_history) | |
| question = message["text"] | |
| response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True) | |
| print(f'User: {question}\nAssistant: {response}') | |
| return response | |
| # buffer = "" | |
| # for new_text in response: | |
| # buffer += new_text | |
| # generated_text_without_prompt = buffer[:] | |
| # time.sleep(0.005) | |
| # yield generated_text_without_prompt | |
| CSS =""" | |
| # @media only screen and (max-width: 600px){ | |
| # #component-3 { | |
| # height: 90dvh !important; | |
| # transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */ | |
| # border-style: solid; | |
| # overflow: hidden; | |
| # flex-grow: 1; | |
| # min-width: min(160px, 100%); | |
| # border-width: var(--block-border-width); | |
| # } | |
| # } | |
| #component-3 { | |
| height: 50dvh !important; | |
| transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */ | |
| border-style: solid; | |
| overflow: hidden; | |
| flex-grow: 1; | |
| min-width: min(160px, 100%); | |
| border-width: var(--block-border-width); | |
| } | |
| /* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */ | |
| button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv { | |
| width: 100%; | |
| object-fit: contain; | |
| height: 100%; | |
| border-radius: 13px; /* Thêm bo góc cho ảnh */ | |
| max-width: 50vw; /* Giới hạn chiều rộng ảnh */ | |
| } | |
| /* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */ | |
| button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] { | |
| user-select: text; | |
| text-align: left; | |
| height: 300px; | |
| } | |
| /* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */ | |
| .message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img { | |
| border-radius: 13px; | |
| max-width: 50vw; | |
| } | |
| .message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img { | |
| margin: var(--size-2); | |
| max-height: 500px; | |
| } | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=chat, | |
| description="""Try [Vintern-3B-beta](https://huggingface.co/5CD-AI/Vintern-3B-beta) in this demo. Vintern-3B-beta consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). | |
| Bias, Risks, and Limitations | |
| The model might have biases because it learned from data that could be biased. | |
| Users should be cautious of these possible biases when using the model.""", | |
| # examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]}, | |
| # {"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]}, | |
| # {"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}], | |
| title="❄️ Vintern-3B-beta Test ❄️", | |
| multimodal=True, | |
| css=CSS | |
| ) | |
| demo.queue().launch() |