Rustamshry's picture
Update app.py
66af988 verified
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import io
from PIL import Image
import gradio as gr
from smolagents import tool, CodeAgent, InferenceClientModel
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, r2_score, mean_squared_error
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
import joblib
import tempfile
import os
# πŸ”‘ Set your HF API key
agent = None
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ” Heuristic Target Column Detection
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def detect_target_column(df: pd.DataFrame) -> str:
"""
Heuristically detect the most likely target column based on naming, cardinality, and type.
"""
if df.empty or len(df.columns) < 2:
return None
scores = {}
for col in df.columns:
score = 0.0
name_lower = col.lower()
# Rule 1: Name matches common target keywords
keywords = ["target", "label", "class", "outcome", "result", "y", "output", "flag", "status", "churn", "survived", "price", "sale"]
if any(kw in name_lower for kw in keywords):
score += 3.0
if name_lower in ["target", "label", "class", "y"]:
score += 2.0
# Rule 2: Binary or low-cardinality categorical β†’ likely classification
nunique = df[col].nunique()
total = len(df)
unique_ratio = nunique / total
if nunique == 2 and df[col].dtype in ["int64", "object", "category"]:
score += 4.0 # Strong signal
elif nunique <= 20 and df[col].dtype in ["int64", "object", "category"]:
score += 3.0
# Rule 3: High unique ratio + numeric β†’ likely regression target
if unique_ratio > 0.8 and df[col].dtype in ["int64", "float64"]:
score += 2.5
# Rule 4: Avoid ID-like or high-cardinality text
id_keywords = ["id", "name", "email", "phone", "address", "username", "url", "link"]
if any(kw in name_lower for kw in id_keywords):
score -= 10.0
if nunique == total and df[col].dtype == "object":
score -= 10.0 # Likely unique identifier
scores[col] = score
# Return best candidate if score > 0
best_col = max(scores, key=scores.get)
return best_col if scores[best_col] > 0 else None
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ› οΈ Tool 1: LoadData
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
@tool
def LoadData(filepath: str) -> dict:
"""
Loads data from a CSV file and returns it as a dictionary.
Args:
filepath (str): Path to the CSV file.
Returns:
dict: Data as dictionary (from DataFrame.to_dict()).
"""
df = pd.read_csv(filepath)
return df.to_dict()
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ› οΈ Tool 2: CleanData (Enhanced)
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
@tool
def CleanData(data: dict, handle_outliers: bool = True, impute_strategy: str = "median_mode") -> pd.DataFrame:
"""
Cleans dataset with smart imputation, encoding, and optional outlier removal.
Args:
data (dict): Dataset in dictionary format.
handle_outliers (bool): Whether to remove outliers using IQR.
impute_strategy (str): "median_mode" or "mean_mode"
Returns:
pd.DataFrame: Cleaned dataset.
"""
df = pd.DataFrame.from_dict(data)
# Drop duplicates
df = df.drop_duplicates().reset_index(drop=True)
# Handle missing values
for col in df.columns:
if df[col].dtype in ["int64", "float64"]:
if impute_strategy == "median_mode" or df[col].skew() > 1:
fill_val = df[col].median()
else:
fill_val = df[col].mean()
df[col] = df[col].fillna(fill_val)
else:
mode = df[col].mode()
fill_val = mode[0] if len(mode) > 0 else "Unknown"
df[col] = df[col].fillna(fill_val)
# Parse datetime
for col in df.columns:
if "date" in col.lower() or "time" in col.lower():
try:
df[col] = pd.to_datetime(df[col], infer_datetime_format=True, errors="coerce")
except:
pass
# Encode categorical variables (only if not too many unique values)
for col in df.select_dtypes(include="object").columns:
if df[col].nunique() / len(df) < 0.5:
df[col] = df[col].astype("category").cat.codes
# else: leave as object (e.g., free text)
# Outlier removal (optional)
if handle_outliers:
for col in df.select_dtypes(include=["float64", "int64"]).columns:
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
count_before = len(df)
df = df[(df[col] >= lower) & (df[col] <= upper)]
if len(df) == 0:
# Avoid empty df
df = pd.DataFrame.from_dict(data) # Revert
break
return df.reset_index(drop=True)
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ“Š Tool 3: EDA (Enhanced)
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
@tool
def EDA(data: dict, max_cat_plots: int = 3, max_num_plots: int = 3) -> dict:
"""
Performs advanced EDA with smart visualizations and insights.
Args:
data (dict): Dataset in dictionary format.
max_cat_plots (int): Max number of categorical distribution plots.
max_num_plots (int): Max number of numeric vs target plots.
Returns:
dict: EDA results including text, plots, and recommendations.
"""
df = pd.DataFrame.from_dict(data)
results = {}
# 1. Summary Stats
results["summary"] = df.describe(include="all").to_string()
# 2. Missing Values
missing = df.isnull().sum()
results["missing_values"] = missing[missing > 0].to_dict()
# Missingness heatmap
if missing.sum() > 0:
plt.figure(figsize=(8, 4))
sns.heatmap(df.isnull(), cbar=True, cmap="viridis", yticklabels=False)
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
img = Image.open(buf)
results["missingness_plot"] = img #buf
# 3. Correlation Heatmap
corr = df.corr(numeric_only=True)
if not corr.empty and len(corr.columns) > 1:
plt.figure(figsize=(8, 6))
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", square=True)
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
img = Image.open(buf)
results["correlation_plot"] = img #buf
# Top 5 absolute correlations
unstacked = corr.abs().unstack()
unstacked = unstacked[unstacked < 1.0]
top_corr = unstacked.sort_values(ascending=False).head(5).to_dict()
results["top_correlations"] = top_corr
# 4. Skewness & Kurtosis
numeric_cols = df.select_dtypes(include=["float64", "int64"]).columns
skew_kurt = {}
for col in numeric_cols:
skew_kurt[col] = {"skew": df[col].skew(), "kurtosis": df[col].kurtosis()}
results["skew_kurtosis"] = skew_kurt
# 5. Numeric Distributions
if len(numeric_cols) > 0:
df[numeric_cols].hist(bins=20, figsize=(12, 8), layout=(2, -1))
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
img = Image.open(buf)
results["numeric_distributions"] = img #buf
# 6. Categorical Distributions
cat_cols = df.select_dtypes(include=["object", "category"]).columns
for col in cat_cols[:max_cat_plots]:
plt.figure(figsize=(6, 4))
top_vals = df[col].value_counts().head(10)
sns.barplot(x=top_vals.index, y=top_vals.values)
plt.xticks(rotation=45)
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
img = Image.open(buf)
results[f"dist_{col}"] = img #buf
# 7. Target Relationships
target_col = detect_target_column(df)
if target_col:
results["detected_target"] = target_col
for col in numeric_cols[:max_num_plots]:
plt.figure(figsize=(6, 4))
if df[target_col].nunique() <= 20:
sns.boxplot(data=df, x=target_col, y=col)
else:
sns.scatterplot(data=df, x=col, y=target_col)
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
img = Image.open(buf)
results[f"{col}_vs_{target_col}"] = img #buf
# 8. Recommendations
recs = []
for col, sk in skew_kurt.items():
if abs(sk["skew"]) > 1:
recs.append(f"Feature '{col}' is skewed ({sk['skew']:.2f}) β†’ consider log transform.")
if results["missing_values"]:
recs.append("Missing data detected β†’ consider KNN or iterative imputation.")
if results.get("top_correlations"):
recs.append("High correlations found β†’ consider PCA or feature selection.")
if target_col:
recs.append(f"Target variable '{target_col}' detected automatically.")
results["recommendations"] = recs
return results
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ€– Tool 4: AutoML (Enhanced)
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
@tool
def AutoML(data: dict, task_hint: str = None) -> dict:
"""
Enhanced AutoML with multiple models and robust evaluation.
Args:
data (dict): Cleaned dataset.
task_hint (str): "classification", "regression", or None.
Returns:
dict: Model results and metrics.
"""
df = pd.DataFrame.from_dict(data)
results = {}
target_col = detect_target_column(df)
if not target_col:
results["note"] = "No target column detected. Check column names and data."
return results
X = df.drop(columns=[target_col])
y = df[target_col]
# One-hot encode X
X = pd.get_dummies(X, drop_first=True)
if X.shape[1] == 0:
results["error"] = "No valid features after encoding."
return results
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Detect task
if task_hint:
task = task_hint
elif y.dtype in ["object", "category"] or y.nunique() <= 20:
task = "classification"
else:
task = "regression"
try:
if task == "classification":
models = {
"RandomForest": RandomForestClassifier(n_estimators=100, random_state=42),
"LogisticRegression": LogisticRegression(max_iter=1000, random_state=42)
}
results["task"] = "classification"
best_acc = 0
for name, model in models.items():
model.fit(X_train, y_train)
preds = model.predict(X_test)
acc = accuracy_score(y_test, preds)
if acc > best_acc:
best_acc = acc
results["accuracy"] = acc
results["best_model"] = name
results["report"] = classification_report(y_test, preds, zero_division=0)
if hasattr(model, "feature_importances_"):
results["feature_importance"] = dict(zip(X.columns, model.feature_importances_))
else:
models = {
"RandomForest": RandomForestRegressor(n_estimators=100, random_state=42),
"LinearRegression": LinearRegression()
}
results["task"] = "regression"
best_r2 = -float("inf")
for name, model in models.items():
model.fit(X_train, y_train)
preds = model.predict(X_test)
r2 = r2_score(y_test, preds)
if r2 > best_r2:
best_r2 = r2
results["r2_score"] = r2
results["mse"] = mean_squared_error(y_test, preds)
results["best_model"] = name
best_model = model # Keep best model
if hasattr(model, "feature_importances_"):
results["feature_importance"] = dict(zip(X.columns, model.feature_importances_))
# βœ… Save the best model to a temporary file
model_dir = tempfile.mkdtemp()
model_path = os.path.join(model_dir, f"trained_model_{task}.pkl")
joblib.dump({
"model": best_model,
"task": task,
"target_column": target_col,
"features": X.columns.tolist()
}, model_path)
results["model_download_path"] = model_path
results["model_info"] = f"Best model: {results['best_model']} | Task: {task} | Target: {target_col}"
except Exception as e:
results["error"] = f"Model training failed: {str(e)}"
return results
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# 🧠 Initialize the AI Agent
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
#agent = CodeAgent(
#tools=[LoadData, CleanData, EDA, AutoML],
#model=InferenceClientModel(
#model_id="Qwen/Qwen2.5-Coder-1.5B-Instruct",
#token=os.environ["HF_TOKEN"],
#provider="Featherless AI",
#max_tokens=4048
#),
#additional_authorized_imports=[
#"pandas", "matplotlib.pyplot", "seaborn", "PIL", "sklearn", "io", "os","joblib","tempfile"
#],
#max_steps=10,
#)
def set_hf_token(token):
global agent
os.environ["HF_TOKEN"] = token.strip()
# βœ… Initialize the agent *only now* when token is available
agent = CodeAgent(
tools=[LoadData, CleanData, EDA, AutoML],
model=InferenceClientModel(
model_id="Qwen/Qwen2.5-Coder-7B-Instruct",
token=os.environ["HF_TOKEN"],
provider="nscale",
max_tokens=4048
),
additional_authorized_imports=[
"pandas", "matplotlib.pyplot", "seaborn", "PIL", "sklearn", "io", "os", "joblib", "tempfile"
],
max_steps=10,
)
return "βœ… Token saved and agent initialized successfully! You can now upload your CSV file."
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸ–ΌοΈ Gradio Interface
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
def analyze_data(file):
if "HF_TOKEN" not in os.environ or not os.environ["HF_TOKEN"]:
return "❌ Please enter your HF token first!", [], None
filepath = file.name
prompt = f"""
Load the data from '{filepath}', then clean it using CleanData with outlier handling.
Run EDA to analyze data quality, distributions, and detect the target variable.
If a target is found, run AutoML to train the best model.
Return all insights, metrics, and visualizations.
"""
try:
results = agent.run(prompt)
except Exception as e:
results = {"error": f"Agent failed: {str(e)}"}
if not isinstance(results, dict):
# AgentText or string β†’ convert to dict-like structure
if hasattr(results, "content"):
text_content = results.content
else:
text_content = str(results)
results = {"summary": text_content}
# === Text Report ===
text_output = ""
if "error" in results:
text_output = f"❌ Error: {results['error']}"
else:
summary = results.get("summary", "No summary.")
missing_vals = results.get("missing_values", {})
top_corr = results.get("top_correlations", {})
outliers = results.get("outliers", {})
recs = results.get("recommendations", [])
detected_target = results.get("detected_target", "Unknown")
text_output += f"### πŸ“Š Dataset Overview\n"
text_output += f"**Detected Target:** `{detected_target}`\n\n"
text_output += f"### Summary Stats\n{summary}\n\n"
text_output += f"### Missing Values\n{missing_vals}\n\n"
text_output += f"### Top Correlations\n{top_corr}\n\n"
text_output += f"### Outliers\n{outliers}\n\n"
text_output += f"### Recommendations\n" + "\n".join([f"- {r}" for r in recs]) + "\n\n"
if "task" in results:
task = results["task"]
text_output += f"### πŸ€– AutoML Results ({task.title()})\n"
text_output += f"**Best Model:** {results.get('best_model', 'Unknown')}\n"
if task == "classification":
text_output += f"**Accuracy:** {results['accuracy']:.3f}\n\n"
text_output += f"```\n{results['report']}\n```\n"
else:
text_output += f"**RΒ²:** {results['r2_score']:.3f}, **MSE:** {results['mse']:.3f}\n"
feat_imp = sorted(results.get("feature_importance", {}).items(), key=lambda x: x[1], reverse=True)[:5]
text_output += f"### Top Features\n" + "\n".join([f"- `{f}`: {imp:.3f}" for f, imp in feat_imp])
# === Collect Plots ===
plots = []
for key, value in results.items():
if isinstance(value, Image.Image):
plots.append(value)
model_file = results.get("model_download_path", None)
if model_file and os.path.exists(model_file):
model_download_output = model_file
else:
model_download_output = None # No file to download
return text_output, plots, model_download_output
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
# πŸš€ Launch Gradio App
# β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 AI Data Analyst Agent with AutoML & Smart Target Detection")
gr.Markdown("Enter your Hugging Face token, then upload a CSV file.")
token_box = gr.Textbox(label="πŸ”‘ Hugging Face Token", placeholder="Enter your HF token here...", type="password")
token_status = gr.Markdown()
token_box.submit(set_hf_token, inputs=token_box, outputs=token_status)
with gr.Row():
file_input = gr.File(label="πŸ“ Upload CSV")
with gr.Row():
text_output = gr.Textbox(label="πŸ“ Analysis Report", lines=24)
with gr.Row():
plots_output = gr.Gallery(label="πŸ“Š EDA & Model Plots", scale=2)
with gr.Row():
model_download = gr.File(label="πŸ’Ύ Download Trained Model (.pkl)")
file_input.upload(analyze_data, inputs=file_input, outputs=[text_output, plots_output, model_download])
# Launch
if __name__ == "__main__":
demo.launch(share=True) # Use share=True for public link