Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import seaborn as sns
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from smolagents import tool, CodeAgent, InferenceClientModel
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.metrics import accuracy_score, classification_report, r2_score, mean_squared_error
|
| 10 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 11 |
+
from sklearn.linear_model import LogisticRegression, LinearRegression
|
| 12 |
+
import joblib
|
| 13 |
+
import tempfile
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# π Set your HF API key
|
| 18 |
+
def set_hf_token(token):
|
| 19 |
+
os.environ["HF_TOKEN"] = token.strip()
|
| 20 |
+
return "β
Token saved successfully! You can now upload your CSV file."
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# ββββββββββββββββββββββββββββββββ
|
| 24 |
+
# π Heuristic Target Column Detection
|
| 25 |
+
# ββββββββββββββββββββββββββββββββ
|
| 26 |
+
|
| 27 |
+
def detect_target_column(df: pd.DataFrame) -> str:
|
| 28 |
+
"""
|
| 29 |
+
Heuristically detect the most likely target column based on naming, cardinality, and type.
|
| 30 |
+
"""
|
| 31 |
+
if df.empty or len(df.columns) < 2:
|
| 32 |
+
return None
|
| 33 |
+
|
| 34 |
+
scores = {}
|
| 35 |
+
|
| 36 |
+
for col in df.columns:
|
| 37 |
+
score = 0.0
|
| 38 |
+
name_lower = col.lower()
|
| 39 |
+
|
| 40 |
+
# Rule 1: Name matches common target keywords
|
| 41 |
+
keywords = ["target", "label", "class", "outcome", "result", "y", "output", "flag", "status", "churn", "survived", "price", "sale"]
|
| 42 |
+
if any(kw in name_lower for kw in keywords):
|
| 43 |
+
score += 3.0
|
| 44 |
+
if name_lower in ["target", "label", "class", "y"]:
|
| 45 |
+
score += 2.0
|
| 46 |
+
|
| 47 |
+
# Rule 2: Binary or low-cardinality categorical β likely classification
|
| 48 |
+
nunique = df[col].nunique()
|
| 49 |
+
total = len(df)
|
| 50 |
+
unique_ratio = nunique / total
|
| 51 |
+
|
| 52 |
+
if nunique == 2 and df[col].dtype in ["int64", "object", "category"]:
|
| 53 |
+
score += 4.0 # Strong signal
|
| 54 |
+
elif nunique <= 20 and df[col].dtype in ["int64", "object", "category"]:
|
| 55 |
+
score += 3.0
|
| 56 |
+
|
| 57 |
+
# Rule 3: High unique ratio + numeric β likely regression target
|
| 58 |
+
if unique_ratio > 0.8 and df[col].dtype in ["int64", "float64"]:
|
| 59 |
+
score += 2.5
|
| 60 |
+
|
| 61 |
+
# Rule 4: Avoid ID-like or high-cardinality text
|
| 62 |
+
id_keywords = ["id", "name", "email", "phone", "address", "username", "url", "link"]
|
| 63 |
+
if any(kw in name_lower for kw in id_keywords):
|
| 64 |
+
score -= 10.0
|
| 65 |
+
if nunique == total and df[col].dtype == "object":
|
| 66 |
+
score -= 10.0 # Likely unique identifier
|
| 67 |
+
|
| 68 |
+
scores[col] = score
|
| 69 |
+
|
| 70 |
+
# Return best candidate if score > 0
|
| 71 |
+
best_col = max(scores, key=scores.get)
|
| 72 |
+
return best_col if scores[best_col] > 0 else None
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# ββββββββββββββββββββββββββββββββ
|
| 76 |
+
# π οΈ Tool 1: LoadData
|
| 77 |
+
# ββββββββββββββββββββββββββββββββ
|
| 78 |
+
|
| 79 |
+
@tool
|
| 80 |
+
def LoadData(filepath: str) -> dict:
|
| 81 |
+
"""
|
| 82 |
+
Loads data from a CSV file and returns it as a dictionary.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
filepath (str): Path to the CSV file.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
dict: Data as dictionary (from DataFrame.to_dict()).
|
| 89 |
+
"""
|
| 90 |
+
df = pd.read_csv(filepath)
|
| 91 |
+
return df.to_dict()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# ββββββββββββββββββββββββββββββββ
|
| 95 |
+
# π οΈ Tool 2: CleanData (Enhanced)
|
| 96 |
+
# ββββββββββββββββββββββββββββββββ
|
| 97 |
+
|
| 98 |
+
@tool
|
| 99 |
+
def CleanData(data: dict, handle_outliers: bool = True, impute_strategy: str = "median_mode") -> pd.DataFrame:
|
| 100 |
+
"""
|
| 101 |
+
Cleans dataset with smart imputation, encoding, and optional outlier removal.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
data (dict): Dataset in dictionary format.
|
| 105 |
+
handle_outliers (bool): Whether to remove outliers using IQR.
|
| 106 |
+
impute_strategy (str): "median_mode" or "mean_mode"
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
pd.DataFrame: Cleaned dataset.
|
| 110 |
+
"""
|
| 111 |
+
df = pd.DataFrame.from_dict(data)
|
| 112 |
+
|
| 113 |
+
# Drop duplicates
|
| 114 |
+
df = df.drop_duplicates().reset_index(drop=True)
|
| 115 |
+
|
| 116 |
+
# Handle missing values
|
| 117 |
+
for col in df.columns:
|
| 118 |
+
if df[col].dtype in ["int64", "float64"]:
|
| 119 |
+
if impute_strategy == "median_mode" or df[col].skew() > 1:
|
| 120 |
+
fill_val = df[col].median()
|
| 121 |
+
else:
|
| 122 |
+
fill_val = df[col].mean()
|
| 123 |
+
df[col] = df[col].fillna(fill_val)
|
| 124 |
+
else:
|
| 125 |
+
mode = df[col].mode()
|
| 126 |
+
fill_val = mode[0] if len(mode) > 0 else "Unknown"
|
| 127 |
+
df[col] = df[col].fillna(fill_val)
|
| 128 |
+
|
| 129 |
+
# Parse datetime
|
| 130 |
+
for col in df.columns:
|
| 131 |
+
if "date" in col.lower() or "time" in col.lower():
|
| 132 |
+
try:
|
| 133 |
+
df[col] = pd.to_datetime(df[col], infer_datetime_format=True, errors="coerce")
|
| 134 |
+
except:
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
# Encode categorical variables (only if not too many unique values)
|
| 138 |
+
for col in df.select_dtypes(include="object").columns:
|
| 139 |
+
if df[col].nunique() / len(df) < 0.5:
|
| 140 |
+
df[col] = df[col].astype("category").cat.codes
|
| 141 |
+
# else: leave as object (e.g., free text)
|
| 142 |
+
|
| 143 |
+
# Outlier removal (optional)
|
| 144 |
+
if handle_outliers:
|
| 145 |
+
for col in df.select_dtypes(include=["float64", "int64"]).columns:
|
| 146 |
+
Q1 = df[col].quantile(0.25)
|
| 147 |
+
Q3 = df[col].quantile(0.75)
|
| 148 |
+
IQR = Q3 - Q1
|
| 149 |
+
lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
|
| 150 |
+
count_before = len(df)
|
| 151 |
+
df = df[(df[col] >= lower) & (df[col] <= upper)]
|
| 152 |
+
if len(df) == 0:
|
| 153 |
+
# Avoid empty df
|
| 154 |
+
df = pd.DataFrame.from_dict(data) # Revert
|
| 155 |
+
break
|
| 156 |
+
|
| 157 |
+
return df.reset_index(drop=True)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# ββββββββββββββββββββββββββββββββ
|
| 161 |
+
# π Tool 3: EDA (Enhanced)
|
| 162 |
+
# ββββββββββββββββββββββββββββββββ
|
| 163 |
+
|
| 164 |
+
@tool
|
| 165 |
+
def EDA(data: dict, max_cat_plots: int = 3, max_num_plots: int = 3) -> dict:
|
| 166 |
+
"""
|
| 167 |
+
Performs advanced EDA with smart visualizations and insights.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
data (dict): Dataset in dictionary format.
|
| 171 |
+
max_cat_plots (int): Max number of categorical distribution plots.
|
| 172 |
+
max_num_plots (int): Max number of numeric vs target plots.
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
dict: EDA results including text, plots, and recommendations.
|
| 176 |
+
"""
|
| 177 |
+
df = pd.DataFrame.from_dict(data)
|
| 178 |
+
results = {}
|
| 179 |
+
|
| 180 |
+
# 1. Summary Stats
|
| 181 |
+
results["summary"] = df.describe(include="all").to_string()
|
| 182 |
+
|
| 183 |
+
# 2. Missing Values
|
| 184 |
+
missing = df.isnull().sum()
|
| 185 |
+
results["missing_values"] = missing[missing > 0].to_dict()
|
| 186 |
+
|
| 187 |
+
# Missingness heatmap
|
| 188 |
+
if missing.sum() > 0:
|
| 189 |
+
plt.figure(figsize=(8, 4))
|
| 190 |
+
sns.heatmap(df.isnull(), cbar=True, cmap="viridis", yticklabels=False)
|
| 191 |
+
buf = io.BytesIO()
|
| 192 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 193 |
+
plt.close()
|
| 194 |
+
buf.seek(0)
|
| 195 |
+
img = Image.open(buf)
|
| 196 |
+
results["missingness_plot"] = img #buf
|
| 197 |
+
|
| 198 |
+
# 3. Correlation Heatmap
|
| 199 |
+
corr = df.corr(numeric_only=True)
|
| 200 |
+
if not corr.empty and len(corr.columns) > 1:
|
| 201 |
+
plt.figure(figsize=(8, 6))
|
| 202 |
+
sns.heatmap(corr, annot=True, fmt=".2f", cmap="coolwarm", square=True)
|
| 203 |
+
buf = io.BytesIO()
|
| 204 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 205 |
+
plt.close()
|
| 206 |
+
buf.seek(0)
|
| 207 |
+
img = Image.open(buf)
|
| 208 |
+
results["correlation_plot"] = img #buf
|
| 209 |
+
|
| 210 |
+
# Top 5 absolute correlations
|
| 211 |
+
unstacked = corr.abs().unstack()
|
| 212 |
+
unstacked = unstacked[unstacked < 1.0]
|
| 213 |
+
top_corr = unstacked.sort_values(ascending=False).head(5).to_dict()
|
| 214 |
+
results["top_correlations"] = top_corr
|
| 215 |
+
|
| 216 |
+
# 4. Skewness & Kurtosis
|
| 217 |
+
numeric_cols = df.select_dtypes(include=["float64", "int64"]).columns
|
| 218 |
+
skew_kurt = {}
|
| 219 |
+
for col in numeric_cols:
|
| 220 |
+
skew_kurt[col] = {"skew": df[col].skew(), "kurtosis": df[col].kurtosis()}
|
| 221 |
+
results["skew_kurtosis"] = skew_kurt
|
| 222 |
+
|
| 223 |
+
# 5. Numeric Distributions
|
| 224 |
+
if len(numeric_cols) > 0:
|
| 225 |
+
df[numeric_cols].hist(bins=20, figsize=(12, 8), layout=(2, -1))
|
| 226 |
+
buf = io.BytesIO()
|
| 227 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 228 |
+
plt.close()
|
| 229 |
+
buf.seek(0)
|
| 230 |
+
img = Image.open(buf)
|
| 231 |
+
results["numeric_distributions"] = img #buf
|
| 232 |
+
|
| 233 |
+
# 6. Categorical Distributions
|
| 234 |
+
cat_cols = df.select_dtypes(include=["object", "category"]).columns
|
| 235 |
+
for col in cat_cols[:max_cat_plots]:
|
| 236 |
+
plt.figure(figsize=(6, 4))
|
| 237 |
+
top_vals = df[col].value_counts().head(10)
|
| 238 |
+
sns.barplot(x=top_vals.index, y=top_vals.values)
|
| 239 |
+
plt.xticks(rotation=45)
|
| 240 |
+
buf = io.BytesIO()
|
| 241 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 242 |
+
plt.close()
|
| 243 |
+
buf.seek(0)
|
| 244 |
+
img = Image.open(buf)
|
| 245 |
+
results[f"dist_{col}"] = img #buf
|
| 246 |
+
|
| 247 |
+
# 7. Target Relationships
|
| 248 |
+
target_col = detect_target_column(df)
|
| 249 |
+
if target_col:
|
| 250 |
+
results["detected_target"] = target_col
|
| 251 |
+
for col in numeric_cols[:max_num_plots]:
|
| 252 |
+
plt.figure(figsize=(6, 4))
|
| 253 |
+
if df[target_col].nunique() <= 20:
|
| 254 |
+
sns.boxplot(data=df, x=target_col, y=col)
|
| 255 |
+
else:
|
| 256 |
+
sns.scatterplot(data=df, x=col, y=target_col)
|
| 257 |
+
buf = io.BytesIO()
|
| 258 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
| 259 |
+
plt.close()
|
| 260 |
+
buf.seek(0)
|
| 261 |
+
img = Image.open(buf)
|
| 262 |
+
results[f"{col}_vs_{target_col}"] = img #buf
|
| 263 |
+
|
| 264 |
+
# 8. Recommendations
|
| 265 |
+
recs = []
|
| 266 |
+
for col, sk in skew_kurt.items():
|
| 267 |
+
if abs(sk["skew"]) > 1:
|
| 268 |
+
recs.append(f"Feature '{col}' is skewed ({sk['skew']:.2f}) β consider log transform.")
|
| 269 |
+
if results["missing_values"]:
|
| 270 |
+
recs.append("Missing data detected β consider KNN or iterative imputation.")
|
| 271 |
+
if results.get("top_correlations"):
|
| 272 |
+
recs.append("High correlations found β consider PCA or feature selection.")
|
| 273 |
+
if target_col:
|
| 274 |
+
recs.append(f"Target variable '{target_col}' detected automatically.")
|
| 275 |
+
results["recommendations"] = recs
|
| 276 |
+
|
| 277 |
+
return results
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# ββββββββββββββββββββββββββββββββ
|
| 281 |
+
# π€ Tool 4: AutoML (Enhanced)
|
| 282 |
+
# ββββββββββββββββββββββββββββββββ
|
| 283 |
+
|
| 284 |
+
@tool
|
| 285 |
+
def AutoML(data: dict, task_hint: str = None) -> dict:
|
| 286 |
+
"""
|
| 287 |
+
Enhanced AutoML with multiple models and robust evaluation.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
data (dict): Cleaned dataset.
|
| 291 |
+
task_hint (str): "classification", "regression", or None.
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
dict: Model results and metrics.
|
| 295 |
+
"""
|
| 296 |
+
df = pd.DataFrame.from_dict(data)
|
| 297 |
+
results = {}
|
| 298 |
+
|
| 299 |
+
target_col = detect_target_column(df)
|
| 300 |
+
if not target_col:
|
| 301 |
+
results["note"] = "No target column detected. Check column names and data."
|
| 302 |
+
return results
|
| 303 |
+
|
| 304 |
+
X = df.drop(columns=[target_col])
|
| 305 |
+
y = df[target_col]
|
| 306 |
+
|
| 307 |
+
# One-hot encode X
|
| 308 |
+
X = pd.get_dummies(X, drop_first=True)
|
| 309 |
+
|
| 310 |
+
if X.shape[1] == 0:
|
| 311 |
+
results["error"] = "No valid features after encoding."
|
| 312 |
+
return results
|
| 313 |
+
|
| 314 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 315 |
+
|
| 316 |
+
# Detect task
|
| 317 |
+
if task_hint:
|
| 318 |
+
task = task_hint
|
| 319 |
+
elif y.dtype in ["object", "category"] or y.nunique() <= 20:
|
| 320 |
+
task = "classification"
|
| 321 |
+
else:
|
| 322 |
+
task = "regression"
|
| 323 |
+
|
| 324 |
+
try:
|
| 325 |
+
if task == "classification":
|
| 326 |
+
models = {
|
| 327 |
+
"RandomForest": RandomForestClassifier(n_estimators=100, random_state=42),
|
| 328 |
+
"LogisticRegression": LogisticRegression(max_iter=1000, random_state=42)
|
| 329 |
+
}
|
| 330 |
+
results["task"] = "classification"
|
| 331 |
+
best_acc = 0
|
| 332 |
+
for name, model in models.items():
|
| 333 |
+
model.fit(X_train, y_train)
|
| 334 |
+
preds = model.predict(X_test)
|
| 335 |
+
acc = accuracy_score(y_test, preds)
|
| 336 |
+
if acc > best_acc:
|
| 337 |
+
best_acc = acc
|
| 338 |
+
results["accuracy"] = acc
|
| 339 |
+
results["best_model"] = name
|
| 340 |
+
results["report"] = classification_report(y_test, preds, zero_division=0)
|
| 341 |
+
if hasattr(model, "feature_importances_"):
|
| 342 |
+
results["feature_importance"] = dict(zip(X.columns, model.feature_importances_))
|
| 343 |
+
|
| 344 |
+
else:
|
| 345 |
+
models = {
|
| 346 |
+
"RandomForest": RandomForestRegressor(n_estimators=100, random_state=42),
|
| 347 |
+
"LinearRegression": LinearRegression()
|
| 348 |
+
}
|
| 349 |
+
results["task"] = "regression"
|
| 350 |
+
best_r2 = -float("inf")
|
| 351 |
+
for name, model in models.items():
|
| 352 |
+
model.fit(X_train, y_train)
|
| 353 |
+
preds = model.predict(X_test)
|
| 354 |
+
r2 = r2_score(y_test, preds)
|
| 355 |
+
if r2 > best_r2:
|
| 356 |
+
best_r2 = r2
|
| 357 |
+
results["r2_score"] = r2
|
| 358 |
+
results["mse"] = mean_squared_error(y_test, preds)
|
| 359 |
+
results["best_model"] = name
|
| 360 |
+
best_model = model # Keep best model
|
| 361 |
+
if hasattr(model, "feature_importances_"):
|
| 362 |
+
results["feature_importance"] = dict(zip(X.columns, model.feature_importances_))
|
| 363 |
+
# β
Save the best model to a temporary file
|
| 364 |
+
model_dir = tempfile.mkdtemp()
|
| 365 |
+
model_path = os.path.join(model_dir, f"trained_model_{task}.pkl")
|
| 366 |
+
joblib.dump({
|
| 367 |
+
"model": best_model,
|
| 368 |
+
"task": task,
|
| 369 |
+
"target_column": target_col,
|
| 370 |
+
"features": X.columns.tolist()
|
| 371 |
+
}, model_path)
|
| 372 |
+
|
| 373 |
+
results["model_download_path"] = model_path
|
| 374 |
+
results["model_info"] = f"Best model: {results['best_model']} | Task: {task} | Target: {target_col}"
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
results["error"] = f"Model training failed: {str(e)}"
|
| 378 |
+
|
| 379 |
+
return results
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
# ββββββββββββββββββββββββββββββββ
|
| 383 |
+
# π§ Initialize the AI Agent
|
| 384 |
+
# ββββββββββββββββββββββββββββββββ
|
| 385 |
+
|
| 386 |
+
agent = CodeAgent(
|
| 387 |
+
tools=[LoadData, CleanData, EDA, AutoML],
|
| 388 |
+
model=InferenceClientModel(
|
| 389 |
+
model_id="Qwen/Qwen2.5-Coder-1.5B-Instruct",
|
| 390 |
+
token=os.environ["HF_TOKEN"],
|
| 391 |
+
provider="Featherless AI",
|
| 392 |
+
max_tokens=4048
|
| 393 |
+
),
|
| 394 |
+
additional_authorized_imports=[
|
| 395 |
+
"pandas", "matplotlib.pyplot", "seaborn", "PIL", "sklearn", "io", "os","joblib","tempfile"
|
| 396 |
+
],
|
| 397 |
+
max_steps=10,
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# ββββββββββββββββββββββββββββββββ
|
| 402 |
+
# πΌοΈ Gradio Interface
|
| 403 |
+
# ββββββββββββββββββββββββββββββββ
|
| 404 |
+
|
| 405 |
+
def analyze_data(file):
|
| 406 |
+
if "HF_TOKEN" not in os.environ or not os.environ["HF_TOKEN"]:
|
| 407 |
+
return "β Please enter your HF token first!", [], None
|
| 408 |
+
|
| 409 |
+
filepath = file.name
|
| 410 |
+
prompt = f"""
|
| 411 |
+
Load the data from '{filepath}', then clean it using CleanData with outlier handling.
|
| 412 |
+
Run EDA to analyze data quality, distributions, and detect the target variable.
|
| 413 |
+
If a target is found, run AutoML to train the best model.
|
| 414 |
+
Return all insights, metrics, and visualizations.
|
| 415 |
+
"""
|
| 416 |
+
try:
|
| 417 |
+
results = agent.run(prompt)
|
| 418 |
+
except Exception as e:
|
| 419 |
+
results = {"error": f"Agent failed: {str(e)}"}
|
| 420 |
+
|
| 421 |
+
# === Text Report ===
|
| 422 |
+
text_output = ""
|
| 423 |
+
|
| 424 |
+
if "error" in results:
|
| 425 |
+
text_output = f"β Error: {results['error']}"
|
| 426 |
+
else:
|
| 427 |
+
summary = results.get("summary", "No summary.")
|
| 428 |
+
missing_vals = results.get("missing_values", {})
|
| 429 |
+
top_corr = results.get("top_correlations", {})
|
| 430 |
+
outliers = results.get("outliers", {})
|
| 431 |
+
recs = results.get("recommendations", [])
|
| 432 |
+
detected_target = results.get("detected_target", "Unknown")
|
| 433 |
+
|
| 434 |
+
text_output += f"### π Dataset Overview\n"
|
| 435 |
+
text_output += f"**Detected Target:** `{detected_target}`\n\n"
|
| 436 |
+
text_output += f"### Summary Stats\n{summary}\n\n"
|
| 437 |
+
text_output += f"### Missing Values\n{missing_vals}\n\n"
|
| 438 |
+
text_output += f"### Top Correlations\n{top_corr}\n\n"
|
| 439 |
+
text_output += f"### Outliers\n{outliers}\n\n"
|
| 440 |
+
text_output += f"### Recommendations\n" + "\n".join([f"- {r}" for r in recs]) + "\n\n"
|
| 441 |
+
|
| 442 |
+
if "task" in results:
|
| 443 |
+
task = results["task"]
|
| 444 |
+
text_output += f"### π€ AutoML Results ({task.title()})\n"
|
| 445 |
+
text_output += f"**Best Model:** {results.get('best_model', 'Unknown')}\n"
|
| 446 |
+
if task == "classification":
|
| 447 |
+
text_output += f"**Accuracy:** {results['accuracy']:.3f}\n\n"
|
| 448 |
+
text_output += f"```\n{results['report']}\n```\n"
|
| 449 |
+
else:
|
| 450 |
+
text_output += f"**RΒ²:** {results['r2_score']:.3f}, **MSE:** {results['mse']:.3f}\n"
|
| 451 |
+
|
| 452 |
+
feat_imp = sorted(results.get("feature_importance", {}).items(), key=lambda x: x[1], reverse=True)[:5]
|
| 453 |
+
text_output += f"### Top Features\n" + "\n".join([f"- `{f}`: {imp:.3f}" for f, imp in feat_imp])
|
| 454 |
+
|
| 455 |
+
# === Collect Plots ===
|
| 456 |
+
plots = []
|
| 457 |
+
for key, value in results.items():
|
| 458 |
+
if isinstance(value, Image.Image):
|
| 459 |
+
plots.append(value)
|
| 460 |
+
|
| 461 |
+
model_file = results.get("model_download_path", None)
|
| 462 |
+
if model_file and os.path.exists(model_file):
|
| 463 |
+
model_download_output = model_file
|
| 464 |
+
else:
|
| 465 |
+
model_download_output = None # No file to download
|
| 466 |
+
|
| 467 |
+
return text_output, plots, model_download_output
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
# ββββββββββββββββββββββββββββββββ
|
| 471 |
+
# π Launch Gradio App
|
| 472 |
+
# ββββββββββββββββββββββββββββββββ
|
| 473 |
+
|
| 474 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 475 |
+
gr.Markdown("# π§ AI Data Analyst Agent with AutoML & Smart Target Detection")
|
| 476 |
+
gr.Markdown("Enter your Hugging Face token, then upload a CSV file.")
|
| 477 |
+
|
| 478 |
+
token_box = gr.Textbox(label="π Hugging Face Token", placeholder="Enter your HF token here...", type="password")
|
| 479 |
+
token_status = gr.Markdown()
|
| 480 |
+
token_box.submit(set_hf_token, inputs=token_box, outputs=token_status)
|
| 481 |
+
|
| 482 |
+
with gr.Row():
|
| 483 |
+
file_input = gr.File(label="π Upload CSV")
|
| 484 |
+
with gr.Row():
|
| 485 |
+
text_output = gr.Textbox(label="π Analysis Report", lines=24)
|
| 486 |
+
with gr.Row():
|
| 487 |
+
plots_output = gr.Gallery(label="π EDA & Model Plots", scale=2)
|
| 488 |
+
with gr.Row():
|
| 489 |
+
model_download = gr.File(label="πΎ Download Trained Model (.pkl)")
|
| 490 |
+
|
| 491 |
+
file_input.upload(analyze_data, inputs=file_input, outputs=[text_output, plots_output, model_download])
|
| 492 |
+
|
| 493 |
+
# Launch
|
| 494 |
+
if __name__ == "__main__":
|
| 495 |
+
demo.launch(share=True) # Use share=True for public link
|