Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from peft import PeftModel, PeftConfig
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
config = PeftConfig.from_pretrained("kietnt0603/randeng-t5-vta-qa-lora")
|
| 6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("IDEA-CCNL/Randeng-T5-784M-QA-Chinese")
|
| 7 |
+
model = PeftModel.from_pretrained(model, "kietnt0603/randeng-t5-vta-qa-lora")
|
| 8 |
+
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Randeng-T5-784M-QA-Chinese")
|
| 10 |
+
|
| 11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
+
|
| 13 |
+
def predict(text):
|
| 14 |
+
input_ids = tokenizer(text, max_length=156, return_tensors="pt", padding="max_length", truncation=True).input_ids.to(device)
|
| 15 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=528, do_sample=True)
|
| 16 |
+
pred = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
| 17 |
+
return pred
|
| 18 |
+
|
| 19 |
+
title = 'VTA-QA Demo'
|
| 20 |
+
article = "Loaded model from https://huggingface.co/kietnt0603/randeng-t5-vta-qa-lora"
|
| 21 |
+
# Create the Gradio interface
|
| 22 |
+
iface = gr.Interface(fn=predict,
|
| 23 |
+
inputs="textbox",
|
| 24 |
+
outputs="textbox",
|
| 25 |
+
title=title,
|
| 26 |
+
article=article)
|
| 27 |
+
|
| 28 |
+
# Launch the interface
|
| 29 |
+
iface.launch()
|