|
|
import subprocess |
|
|
import os |
|
|
import gradio as gr |
|
|
from groq import Groq |
|
|
|
|
|
groq_api_key = os.environ('Groq_Api_key') |
|
|
|
|
|
subprocess.run(["export", f"GROQ_API_KEY={groq_api_key}"], check=True) |
|
|
|
|
|
def generate_response(input_text): |
|
|
client = Groq() |
|
|
|
|
|
stream = client.chat.completions.create( |
|
|
messages=[ |
|
|
{"role": "system", "content": "you are a helpful assistant."}, |
|
|
{"role": "user", "content": input_text} |
|
|
], |
|
|
model="mixtral-8x7b-32768", |
|
|
temperature=0.5, |
|
|
max_tokens=1024, |
|
|
top_p=1, |
|
|
stop=None, |
|
|
stream=True, |
|
|
) |
|
|
|
|
|
response = "" |
|
|
for chunk in stream: |
|
|
response += chunk.choices[0].delta.content |
|
|
|
|
|
return response |
|
|
|
|
|
|
|
|
inputs = gr.Textbox(label="Enter your question") |
|
|
outputs = gr.Textbox(label="Model Response") |
|
|
|
|
|
gr.Interface( |
|
|
fn=generate_response, |
|
|
inputs=inputs, |
|
|
outputs=outputs, |
|
|
title="Language Model Assistant", |
|
|
description="Ask questions and get responses from a language model.", |
|
|
).launch(show_api=False, share=True) |