Abid Ali Awan
commited on
Commit
·
e4e6a48
1
Parent(s):
f4b6d22
Update README.md: Change emoji, color scheme, and short description to better reflect the project focus on Urdu speech-to-text using faster-whisper.
Browse files- README.md +4 -4
- app.py +125 -0
- requirements.txt +1 -0
README.md
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
---
|
| 2 |
title: Faster Urdu ASR
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.35.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description:
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: Faster Urdu ASR
|
| 3 |
+
emoji: 🏎️
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.35.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: Best Urdu speech to text using faster-whisper.
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py – Urdu Whisper (CT2) transcription demo with upload + record
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import faster_whisper
|
| 5 |
+
import torch
|
| 6 |
+
from datetime import timedelta
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# (Optional) cache Hugging Face files in a persistent dir when running in Spaces
|
| 11 |
+
os.environ["HF_HOME"] = "/home/user/app/.cache"
|
| 12 |
+
|
| 13 |
+
# Show GPU availability
|
| 14 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 17 |
+
|
| 18 |
+
# Load the Urdu CT2 Whisper model
|
| 19 |
+
print("Loading model... this may take a minute the first time.")
|
| 20 |
+
model = faster_whisper.WhisperModel(
|
| 21 |
+
"kingabzpro/whisper-large-v3-urdu-ct2",
|
| 22 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 23 |
+
compute_type="float16" if torch.cuda.is_available() else "float32",
|
| 24 |
+
)
|
| 25 |
+
print("✅ Model loaded successfully!")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def format_timestamp(seconds, format_type="srt"):
|
| 29 |
+
delta = timedelta(seconds=seconds)
|
| 30 |
+
hours = int(delta.total_seconds()) // 3600
|
| 31 |
+
minutes = (int(delta.total_seconds()) % 3600) // 60
|
| 32 |
+
sec = int(delta.total_seconds()) % 60
|
| 33 |
+
ms = int(delta.microseconds / 1000)
|
| 34 |
+
sep = "," if format_type == "srt" else "."
|
| 35 |
+
return f"{hours:02d}:{minutes:02d}:{sec:02d}{sep}{ms:03d}"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def transcribe_audio(uploaded_path, recorded_path, output_format, beam_size):
|
| 39 |
+
# choose recorded over uploaded if present
|
| 40 |
+
audio_path = recorded_path or uploaded_path
|
| 41 |
+
if not audio_path:
|
| 42 |
+
raise gr.Error("Please upload or record an audio clip.")
|
| 43 |
+
segments_gen, info = model.transcribe(
|
| 44 |
+
audio_path,
|
| 45 |
+
language="ur",
|
| 46 |
+
beam_size=beam_size,
|
| 47 |
+
word_timestamps=True,
|
| 48 |
+
condition_on_previous_text=False,
|
| 49 |
+
vad_filter=True,
|
| 50 |
+
vad_parameters=dict(min_silence_duration_ms=500),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
segments, full = [], []
|
| 54 |
+
for seg in segments_gen:
|
| 55 |
+
segments.append({"start": seg.start, "end": seg.end, "text": seg.text.strip()})
|
| 56 |
+
full.append(seg.text.strip())
|
| 57 |
+
|
| 58 |
+
if output_format == "text":
|
| 59 |
+
return " ".join(full)
|
| 60 |
+
if output_format == "srt":
|
| 61 |
+
lines = []
|
| 62 |
+
for i, s in enumerate(segments, 1):
|
| 63 |
+
lines += [
|
| 64 |
+
str(i),
|
| 65 |
+
f"{format_timestamp(s['start'])} --> {format_timestamp(s['end'])}",
|
| 66 |
+
s["text"],
|
| 67 |
+
"",
|
| 68 |
+
]
|
| 69 |
+
return "\n".join(lines)
|
| 70 |
+
if output_format == "vtt":
|
| 71 |
+
lines = ["WEBVTT", ""]
|
| 72 |
+
for s in segments:
|
| 73 |
+
lines += [
|
| 74 |
+
f"{format_timestamp(s['start'], 'vtt')} --> {format_timestamp(s['end'], 'vtt')}",
|
| 75 |
+
s["text"],
|
| 76 |
+
"",
|
| 77 |
+
]
|
| 78 |
+
return "\n".join(lines)
|
| 79 |
+
if output_format == "json":
|
| 80 |
+
return json.dumps(
|
| 81 |
+
{
|
| 82 |
+
"text": " ".join(full),
|
| 83 |
+
"segments": segments,
|
| 84 |
+
"language": info.language,
|
| 85 |
+
"language_probability": info.language_probability,
|
| 86 |
+
"duration": info.duration,
|
| 87 |
+
"duration_after_vad": info.duration_after_vad,
|
| 88 |
+
},
|
| 89 |
+
ensure_ascii=False,
|
| 90 |
+
indent=2,
|
| 91 |
+
)
|
| 92 |
+
raise gr.Error(f"Unsupported format: {output_format}")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
with gr.Blocks(title="Urdu Whisper Transcription") as iface:
|
| 96 |
+
gr.Markdown("## Urdu Whisper Transcription")
|
| 97 |
+
with gr.Row():
|
| 98 |
+
with gr.Column():
|
| 99 |
+
upload = gr.Audio(
|
| 100 |
+
source="upload", type="filepath", label="Upload Audio File"
|
| 101 |
+
)
|
| 102 |
+
record = gr.Audio(
|
| 103 |
+
source="microphone", type="filepath", label="Record Audio"
|
| 104 |
+
)
|
| 105 |
+
fmt = gr.Radio(
|
| 106 |
+
choices=["text", "srt", "vtt", "json"],
|
| 107 |
+
value="text",
|
| 108 |
+
label="Output Format",
|
| 109 |
+
)
|
| 110 |
+
beam = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Beam Size")
|
| 111 |
+
btn = gr.Button("Transcribe", variant="primary")
|
| 112 |
+
with gr.Column():
|
| 113 |
+
out = gr.Textbox(
|
| 114 |
+
label="Result", lines=20, max_lines=30, show_copy_button=True
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
btn.click(
|
| 118 |
+
fn=transcribe_audio,
|
| 119 |
+
inputs=[upload, record, fmt, beam],
|
| 120 |
+
outputs=out,
|
| 121 |
+
api_name="predict",
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
if __name__ == "__main__":
|
| 125 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
faster-whisper==1.1.1
|