Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import nltk
|
| 4 |
+
|
| 5 |
+
from nltk.tokenize import sent_tokenize
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
nltk.download("punkt")
|
| 12 |
+
nltk.download('punkt_tab')
|
| 13 |
+
|
| 14 |
+
model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli" #"MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 17 |
+
|
| 18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
| 19 |
+
|
| 20 |
+
labels = ["entailment", "neutral", "contradiction"]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def nli(hypothesis, premise):
|
| 24 |
+
inputs = tokenizer(premise, hypothesis, return_tensors="pt", truncation=True, max_length=512)
|
| 25 |
+
logits = model(**inputs).logits[0]
|
| 26 |
+
probs = torch.softmax(logits, -1).tolist()
|
| 27 |
+
return dict(zip(labels, probs))
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_labels(result):
|
| 31 |
+
if result["entailment"]> result["neutral"] and result["entailment"]> result["contradiction"]:
|
| 32 |
+
return "entailment"
|
| 33 |
+
|
| 34 |
+
elif result["entailment"]<result["neutral"] and result["contradiction"]<result["neutral"]:
|
| 35 |
+
return "neutral"
|
| 36 |
+
|
| 37 |
+
else:
|
| 38 |
+
return "contradiction"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def detect_hallucinations(generated_text, source_text):
|
| 45 |
+
"""
|
| 46 |
+
Detect intrinsic and extrinsic hallucinations in the generated text.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
generated_sentences = sent_tokenize(generated_text)
|
| 51 |
+
source_sentences = sent_tokenize(source_text)
|
| 52 |
+
|
| 53 |
+
intrinsic = []
|
| 54 |
+
extrinsic = []
|
| 55 |
+
|
| 56 |
+
correct_sents = []
|
| 57 |
+
|
| 58 |
+
for i in range(len(generated_sentences)):
|
| 59 |
+
for j in range(len(source_sentences)):
|
| 60 |
+
|
| 61 |
+
# result = nli([generated_sentences[i], source_sentences[j]])[0]
|
| 62 |
+
prediction = nli(generated_sentences[i], source_sentences[j])
|
| 63 |
+
label = get_labels(prediction)
|
| 64 |
+
score = prediction[label]
|
| 65 |
+
|
| 66 |
+
result = {"label": label, "score": score}
|
| 67 |
+
|
| 68 |
+
if result['label'].lower() == "contradiction":
|
| 69 |
+
intrinsic.append({
|
| 70 |
+
"generated_sentence": generated_sentences[i],
|
| 71 |
+
"source_sentence": source_sentences[j],
|
| 72 |
+
"contradiction_score": result['score']
|
| 73 |
+
})
|
| 74 |
+
|
| 75 |
+
elif result['label'].lower() == "entailment":
|
| 76 |
+
correct_sents.append(generated_sentences[i])
|
| 77 |
+
break
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
if result['label'].lower() == "neutral" and generated_sentences[i] not in correct_sents:
|
| 81 |
+
extrinsic.append({
|
| 82 |
+
"claim": generated_sentences[i],
|
| 83 |
+
"source_sentence": source_sentences[j],
|
| 84 |
+
"status": "not_supported",
|
| 85 |
+
"confidence": result['score']
|
| 86 |
+
})
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
return {
|
| 91 |
+
"intrinsic": intrinsic,
|
| 92 |
+
"extrinsic": extrinsic
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
def gradio_interface(generated_text, source_text):
|
| 96 |
+
result = detect_hallucinations(generated_text, source_text)
|
| 97 |
+
return result
|
| 98 |
+
|
| 99 |
+
theme = gr.themes.Soft(primary_hue="teal", secondary_hue="blue", neutral_hue="gray").set(
|
| 100 |
+
body_text_color="*neutral_900",
|
| 101 |
+
block_label_text_color="*neutral_900",
|
| 102 |
+
block_title_text_color="*neutral_900"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
custom_css = """
|
| 108 |
+
.gradio-container { background-color: #ffffff !important; }
|
| 109 |
+
.gradio-json { font-family: 'Fira Code', monospace; font-size: 14px; color: #1f2937 !important; }
|
| 110 |
+
#header_text {
|
| 111 |
+
color: #111 !important;
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
dark_css = """
|
| 116 |
+
.gradio-container {
|
| 117 |
+
background-color: #000 !important;
|
| 118 |
+
color: #eee !important;
|
| 119 |
+
}
|
| 120 |
+
.gradio-container .gr-block {
|
| 121 |
+
background-color: #000 !important;
|
| 122 |
+
}
|
| 123 |
+
.gradio-container textarea, .gradio-container input {
|
| 124 |
+
background-color: #111 !important;
|
| 125 |
+
color: #eee !important;
|
| 126 |
+
}
|
| 127 |
+
.gradio-json {
|
| 128 |
+
background-color: #111 !important;
|
| 129 |
+
color: #eee !important;
|
| 130 |
+
}
|
| 131 |
+
#header_text {
|
| 132 |
+
color: #eee !important;
|
| 133 |
+
}
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
demo = gr.Blocks(theme=theme, css=dark_css)
|
| 137 |
+
|
| 138 |
+
with demo:
|
| 139 |
+
gr.Markdown("#Hallucination Detector", elem_id="header_text")
|
| 140 |
+
gr.Markdown(
|
| 141 |
+
"Detects **intrinsic** (internal contradictions) and **extrinsic** "
|
| 142 |
+
"(source unsupported) hallucinations",
|
| 143 |
+
elem_id="header_text"
|
| 144 |
+
)
|
| 145 |
+
gen = gr.Textbox(lines=8, label="Generated Text")
|
| 146 |
+
src = gr.Textbox(lines=8, label="Source Text")
|
| 147 |
+
out = gr.JSON(label="🔍 Analysis Result (JSON)")
|
| 148 |
+
|
| 149 |
+
gen.submit(detect_hallucinations, inputs=[gen, src], outputs=out)
|
| 150 |
+
src.submit(detect_hallucinations, inputs=[gen, src], outputs=out)
|
| 151 |
+
gr.Button("Run Analysis").click(detect_hallucinations, inputs=[gen, src], outputs=out)
|
| 152 |
+
|
| 153 |
+
demo.launch()
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|