Kai Jennissen
commited on
added tools
Browse files- agent.py +120 -20
- app.py +20 -5
- requirements.in +3 -0
- requirements.txt +6 -0
- tools.py +672 -0
agent.py
CHANGED
|
@@ -3,10 +3,21 @@ from smolagents import (
|
|
| 3 |
CodeAgent,
|
| 4 |
DuckDuckGoSearchTool,
|
| 5 |
VisitWebpageTool,
|
| 6 |
-
InferenceClientModel,
|
|
|
|
|
|
|
| 7 |
)
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
from tracing import setup_tracing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
load_dotenv()
|
| 12 |
|
|
@@ -22,6 +33,59 @@ If you are asked for a string, don't use articles, neither abbreviations (e.g. f
|
|
| 22 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 23 |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
| 27 |
"""
|
|
@@ -45,39 +109,75 @@ def get_agent():
|
|
| 45 |
|
| 46 |
# SmolagentsInstrumentor will automatically trace agent operations
|
| 47 |
|
| 48 |
-
llm_qwen = InferenceClientModel(
|
| 49 |
-
|
| 50 |
-
)
|
| 51 |
-
llm_deepseek = InferenceClientModel(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
|
| 60 |
# Create web agent
|
| 61 |
web_agent = ToolCallingAgent(
|
| 62 |
-
tools=[
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
max_steps=3,
|
| 65 |
name="Web_Agent",
|
| 66 |
description="A web agent that can search the web and visit webpages.",
|
| 67 |
verbosity_level=1,
|
| 68 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# Create manager agent
|
| 71 |
manager_agent = CodeAgent(
|
| 72 |
-
tools=[],
|
| 73 |
-
managed_agents=[web_agent],
|
| 74 |
-
model=
|
| 75 |
max_steps=5,
|
| 76 |
planning_interval=10,
|
| 77 |
additional_authorized_imports=["pandas", "numpy"],
|
| 78 |
verbosity_level=1,
|
| 79 |
-
description=MANAGER_PROMPT,
|
| 80 |
)
|
|
|
|
|
|
|
| 81 |
return manager_agent
|
| 82 |
|
| 83 |
|
|
@@ -88,11 +188,11 @@ if __name__ == "__main__":
|
|
| 88 |
|
| 89 |
# Get agent with tracing already configured
|
| 90 |
agent = get_agent()
|
| 91 |
-
|
| 92 |
# Run agent - SmolagentsInstrumentor will automatically trace the execution
|
| 93 |
print("Running agent with tracing enabled...")
|
| 94 |
result = agent.run(
|
| 95 |
-
"
|
| 96 |
)
|
| 97 |
print(f"Result: {result}")
|
| 98 |
print(
|
|
|
|
| 3 |
CodeAgent,
|
| 4 |
DuckDuckGoSearchTool,
|
| 5 |
VisitWebpageTool,
|
| 6 |
+
# InferenceClientModel,
|
| 7 |
+
OpenAIServerModel,
|
| 8 |
+
WikipediaSearchTool,
|
| 9 |
)
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
from tracing import setup_tracing
|
| 12 |
+
from tools import (
|
| 13 |
+
read_image,
|
| 14 |
+
transcribe_audio,
|
| 15 |
+
run_video,
|
| 16 |
+
read_code,
|
| 17 |
+
fetch_task_files,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# from tools import go_back, close_popups, search_item_ctrl_f, save_screenshot
|
| 21 |
|
| 22 |
load_dotenv()
|
| 23 |
|
|
|
|
| 33 |
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 34 |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """
|
| 35 |
|
| 36 |
+
helium_instructions = """
|
| 37 |
+
You can use helium to access websites. Don't bother about the helium driver, it's already managed.
|
| 38 |
+
We've already ran "from helium import *"
|
| 39 |
+
Then you can go to pages!
|
| 40 |
+
Code:
|
| 41 |
+
```py
|
| 42 |
+
go_to('github.com/trending')
|
| 43 |
+
```<end_code>
|
| 44 |
+
|
| 45 |
+
You can directly click clickable elements by inputting the text that appears on them.
|
| 46 |
+
Code:
|
| 47 |
+
```py
|
| 48 |
+
click("Top products")
|
| 49 |
+
```<end_code>
|
| 50 |
+
|
| 51 |
+
If it's a link:
|
| 52 |
+
Code:
|
| 53 |
+
```py
|
| 54 |
+
click(Link("Top products"))
|
| 55 |
+
```<end_code>
|
| 56 |
+
|
| 57 |
+
If you try to interact with an element and it's not found, you'll get a LookupError.
|
| 58 |
+
In general stop your action after each button click to see what happens on your screenshot.
|
| 59 |
+
Never try to login in a page.
|
| 60 |
+
|
| 61 |
+
To scroll up or down, use scroll_down or scroll_up with as an argument the number of pixels to scroll from.
|
| 62 |
+
Code:
|
| 63 |
+
```py
|
| 64 |
+
scroll_down(num_pixels=1200) # This will scroll one viewport down
|
| 65 |
+
```<end_code>
|
| 66 |
+
|
| 67 |
+
When you have pop-ups with a cross icon to close, don't try to click the close icon by finding its element or targeting an 'X' element (this most often fails).
|
| 68 |
+
Just use your built-in tool `close_popups` to close them:
|
| 69 |
+
Code:
|
| 70 |
+
```py
|
| 71 |
+
close_popups()
|
| 72 |
+
```<end_code>
|
| 73 |
+
|
| 74 |
+
You can use .exists() to check for the existence of an element. For example:
|
| 75 |
+
Code:
|
| 76 |
+
```py
|
| 77 |
+
if Text('Accept cookies?').exists():
|
| 78 |
+
click('I accept')
|
| 79 |
+
```<end_code>
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
add_sys_prompt = """\n\nIf a file_url is available or an url is given in question statement, then request and use the content to answer the question. \
|
| 83 |
+
If a code file, such as .py file, is given, do not attempt to execute it but rather open it as a text file and analyze the content. \
|
| 84 |
+
When a tabluar file, such as csv, tsv, xlsx, is given, read it using pandas.
|
| 85 |
+
|
| 86 |
+
Make sure you provide the answer in accordance with the instruction provided in the question. Do not return the result of tool as a final_answer.
|
| 87 |
+
Do Not add any additional information, explanation, unnecessary words or symbols. The answer is likely as simple as one word."""
|
| 88 |
+
|
| 89 |
|
| 90 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
| 91 |
"""
|
|
|
|
| 109 |
|
| 110 |
# SmolagentsInstrumentor will automatically trace agent operations
|
| 111 |
|
| 112 |
+
# llm_qwen = InferenceClientModel(
|
| 113 |
+
# model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together"
|
| 114 |
+
# )
|
| 115 |
+
# llm_deepseek = InferenceClientModel(
|
| 116 |
+
# "deepseek-ai/DeepSeek-R1",
|
| 117 |
+
# provider="together",
|
| 118 |
+
# max_tokens=8096,
|
| 119 |
+
# # "Qwen/Qwen3-235B-A22B-FP8",
|
| 120 |
+
# # provider="together",
|
| 121 |
+
# # max_tokens=8096,
|
| 122 |
+
# )
|
| 123 |
|
| 124 |
# Create web agent
|
| 125 |
web_agent = ToolCallingAgent(
|
| 126 |
+
tools=[
|
| 127 |
+
DuckDuckGoSearchTool(),
|
| 128 |
+
VisitWebpageTool(),
|
| 129 |
+
WikipediaSearchTool(),
|
| 130 |
+
],
|
| 131 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
| 132 |
max_steps=3,
|
| 133 |
name="Web_Agent",
|
| 134 |
description="A web agent that can search the web and visit webpages.",
|
| 135 |
verbosity_level=1,
|
| 136 |
)
|
| 137 |
+
mm_agent = CodeAgent(
|
| 138 |
+
tools=[
|
| 139 |
+
read_image,
|
| 140 |
+
transcribe_audio,
|
| 141 |
+
read_code,
|
| 142 |
+
run_video,
|
| 143 |
+
],
|
| 144 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
| 145 |
+
max_steps=3,
|
| 146 |
+
name="Multimedia_Agent",
|
| 147 |
+
description="An agent that can answer questions about all types of images, videos and speech. Needs to be provided with a valid url or an image.",
|
| 148 |
+
verbosity_level=1,
|
| 149 |
+
)
|
| 150 |
|
| 151 |
+
# Initialize the model
|
| 152 |
+
# vlm = InferenceClientModel(model_id="Qwen/Qwen2.5-Vision-32B", provider="together")
|
| 153 |
+
|
| 154 |
+
# # Create the agent
|
| 155 |
+
# vision_agent = CodeAgent(
|
| 156 |
+
# tools=[go_back, close_popups, search_item_ctrl_f],
|
| 157 |
+
# model=vlm,
|
| 158 |
+
# additional_authorized_imports=["helium", "selenium"],
|
| 159 |
+
# step_callbacks=[save_screenshot],
|
| 160 |
+
# max_steps=10,
|
| 161 |
+
# planning_interval=10,
|
| 162 |
+
# verbosity_level=1,
|
| 163 |
+
# name="Vision_Agent",
|
| 164 |
+
# description="A vision agent that can interact with webpages and take screenshots.",
|
| 165 |
+
# )
|
| 166 |
+
# vision_agent.prompt_templates["system_prompt"] += helium_instructions
|
| 167 |
+
|
| 168 |
+
# Import helium for the agent
|
| 169 |
# Create manager agent
|
| 170 |
manager_agent = CodeAgent(
|
| 171 |
+
tools=[fetch_task_files],
|
| 172 |
+
managed_agents=[web_agent, mm_agent],
|
| 173 |
+
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
| 174 |
max_steps=5,
|
| 175 |
planning_interval=10,
|
| 176 |
additional_authorized_imports=["pandas", "numpy"],
|
| 177 |
verbosity_level=1,
|
|
|
|
| 178 |
)
|
| 179 |
+
|
| 180 |
+
manager_agent.prompt_templates["system_prompt"] += add_sys_prompt
|
| 181 |
return manager_agent
|
| 182 |
|
| 183 |
|
|
|
|
| 188 |
|
| 189 |
# Get agent with tracing already configured
|
| 190 |
agent = get_agent()
|
| 191 |
+
agent.visualize()
|
| 192 |
# Run agent - SmolagentsInstrumentor will automatically trace the execution
|
| 193 |
print("Running agent with tracing enabled...")
|
| 194 |
result = agent.run(
|
| 195 |
+
"How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia."
|
| 196 |
)
|
| 197 |
print(f"Result: {result}")
|
| 198 |
print(
|
app.py
CHANGED
|
@@ -24,10 +24,24 @@ class BasicAgent:
|
|
| 24 |
self.agent = get_agent()
|
| 25 |
print("BasicAgent initialized.")
|
| 26 |
|
| 27 |
-
def __call__(self, question: str) -> str:
|
| 28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return answer
|
| 32 |
|
| 33 |
|
|
@@ -93,14 +107,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 93 |
results_log = []
|
| 94 |
answers_payload = []
|
| 95 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 96 |
-
for item in questions_data[:
|
| 97 |
task_id = item.get("task_id")
|
| 98 |
question_text = item.get("question")
|
| 99 |
if not task_id or question_text is None:
|
| 100 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 101 |
continue
|
| 102 |
try:
|
| 103 |
-
|
|
|
|
| 104 |
answers_payload.append(
|
| 105 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
| 106 |
)
|
|
|
|
| 24 |
self.agent = get_agent()
|
| 25 |
print("BasicAgent initialized.")
|
| 26 |
|
| 27 |
+
def __call__(self, question: str, task_id: str = None) -> str:
|
| 28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 29 |
+
|
| 30 |
+
# If task_id is provided, we'll include context about possible files
|
| 31 |
+
if task_id:
|
| 32 |
+
# Add context about files to the question
|
| 33 |
+
context = f"""Task ID: {task_id}
|
| 34 |
+
|
| 35 |
+
If you need files for this task, you can use the fetch_task_files tool with the task_id.
|
| 36 |
+
Example: fetch_task_files(task_id="{task_id}")
|
| 37 |
+
|
| 38 |
+
Question: {question}"""
|
| 39 |
+
|
| 40 |
+
answer = self.agent.run(context)
|
| 41 |
+
else:
|
| 42 |
+
answer = self.agent.run(question)
|
| 43 |
+
|
| 44 |
+
print(f"Agent returning answer: {answer}")
|
| 45 |
return answer
|
| 46 |
|
| 47 |
|
|
|
|
| 107 |
results_log = []
|
| 108 |
answers_payload = []
|
| 109 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 110 |
+
for item in questions_data[3:4]:
|
| 111 |
task_id = item.get("task_id")
|
| 112 |
question_text = item.get("question")
|
| 113 |
if not task_id or question_text is None:
|
| 114 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 115 |
continue
|
| 116 |
try:
|
| 117 |
+
# Pass both question text and task_id to the agent
|
| 118 |
+
submitted_answer = agent(question_text, task_id)
|
| 119 |
answers_payload.append(
|
| 120 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
| 121 |
)
|
requirements.in
CHANGED
|
@@ -1,5 +1,8 @@
|
|
|
|
|
| 1 |
duckduckgo_search>=7.0.0,<8.0.0
|
| 2 |
gradio[oauth]
|
|
|
|
| 3 |
requests
|
| 4 |
smolagents[gradio,litellm,openai,telemetry,toolkit,torch,transformers,vision]
|
| 5 |
wikipedia-api
|
|
|
|
|
|
| 1 |
+
av
|
| 2 |
duckduckgo_search>=7.0.0,<8.0.0
|
| 3 |
gradio[oauth]
|
| 4 |
+
pytube
|
| 5 |
requests
|
| 6 |
smolagents[gradio,litellm,openai,telemetry,toolkit,torch,transformers,vision]
|
| 7 |
wikipedia-api
|
| 8 |
+
yt-dlp
|
requirements.txt
CHANGED
|
@@ -47,6 +47,8 @@ authlib==1.5.2
|
|
| 47 |
# via
|
| 48 |
# arize-phoenix
|
| 49 |
# gradio
|
|
|
|
|
|
|
| 50 |
beautifulsoup4==4.13.4
|
| 51 |
# via markdownify
|
| 52 |
cachetools==5.5.2
|
|
@@ -353,6 +355,8 @@ python-multipart==0.0.20
|
|
| 353 |
# via
|
| 354 |
# arize-phoenix
|
| 355 |
# gradio
|
|
|
|
|
|
|
| 356 |
pytz==2025.2
|
| 357 |
# via pandas
|
| 358 |
pyyaml==6.0.2
|
|
@@ -526,5 +530,7 @@ wsproto==1.2.0
|
|
| 526 |
# via trio-websocket
|
| 527 |
yarl==1.20.0
|
| 528 |
# via aiohttp
|
|
|
|
|
|
|
| 529 |
zipp==3.21.0
|
| 530 |
# via importlib-metadata
|
|
|
|
| 47 |
# via
|
| 48 |
# arize-phoenix
|
| 49 |
# gradio
|
| 50 |
+
av==14.3.0
|
| 51 |
+
# via -r requirements.in
|
| 52 |
beautifulsoup4==4.13.4
|
| 53 |
# via markdownify
|
| 54 |
cachetools==5.5.2
|
|
|
|
| 355 |
# via
|
| 356 |
# arize-phoenix
|
| 357 |
# gradio
|
| 358 |
+
pytube==15.0.0
|
| 359 |
+
# via -r requirements.in
|
| 360 |
pytz==2025.2
|
| 361 |
# via pandas
|
| 362 |
pyyaml==6.0.2
|
|
|
|
| 530 |
# via trio-websocket
|
| 531 |
yarl==1.20.0
|
| 532 |
# via aiohttp
|
| 533 |
+
yt-dlp==2025.4.30
|
| 534 |
+
# via -r requirements.in
|
| 535 |
zipp==3.21.0
|
| 536 |
# via importlib-metadata
|
tools.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import io
|
| 3 |
+
import base64
|
| 4 |
+
import openai
|
| 5 |
+
from openai import OpenAI
|
| 6 |
+
from smolagents import tool
|
| 7 |
+
import os
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import functools
|
| 10 |
+
from typing import List, Optional, Dict, Any
|
| 11 |
+
import sys
|
| 12 |
+
|
| 13 |
+
import av
|
| 14 |
+
from yt_dlp import YoutubeDL
|
| 15 |
+
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import wikipediaapi
|
| 18 |
+
import tempfile
|
| 19 |
+
|
| 20 |
+
model_id = "gpt-4.1"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@tool
|
| 24 |
+
def read_image(query: str, img_url: str) -> str:
|
| 25 |
+
"""
|
| 26 |
+
Use a visual question answering (VQA) model to generate a response to a query based on an image.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
query (str): A natural language question about the image.
|
| 30 |
+
img_url (str): The URL of the image to analyze.
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
str: A response generated by the VQA model based on the provided image and question.
|
| 34 |
+
"""
|
| 35 |
+
client = OpenAI()
|
| 36 |
+
response = client.responses.create(
|
| 37 |
+
model=model_id,
|
| 38 |
+
input=[
|
| 39 |
+
{
|
| 40 |
+
"role": "user",
|
| 41 |
+
"content": [
|
| 42 |
+
{"type": "input_text", "text": query},
|
| 43 |
+
{
|
| 44 |
+
"type": "input_image",
|
| 45 |
+
"image_url": img_url,
|
| 46 |
+
},
|
| 47 |
+
],
|
| 48 |
+
}
|
| 49 |
+
],
|
| 50 |
+
)
|
| 51 |
+
return response.output_text
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@tool
|
| 55 |
+
def read_code(file_url: str) -> str:
|
| 56 |
+
"""
|
| 57 |
+
Read the contents of a code file such as py file instead of executing it. Use this tool to analyze a code snippet.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
file_url (str): The URL of the code file to retrieve.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
str: The content of the file as a string.
|
| 64 |
+
"""
|
| 65 |
+
response = requests.get(file_url)
|
| 66 |
+
response.raise_for_status()
|
| 67 |
+
return response.text
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@tool
|
| 71 |
+
def transcribe_audio(file_url: str, file_name: str) -> str:
|
| 72 |
+
"""
|
| 73 |
+
Download and transcribe an audio file using transcription model.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
file_url (str): Direct URL to the audio file (e.g., .mp3, .wav).
|
| 77 |
+
file_name (str): Filename including extension, used to determine format.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
str: The transcribed text from the audio file.
|
| 81 |
+
"""
|
| 82 |
+
# Download audio content
|
| 83 |
+
response = requests.get(file_url)
|
| 84 |
+
response.raise_for_status()
|
| 85 |
+
|
| 86 |
+
# Extract extension (fallback to mp3 if missing)
|
| 87 |
+
extension = file_name.split(".")[-1].lower() or "mp3"
|
| 88 |
+
|
| 89 |
+
# Wrap bytes in a file-like object with a valid name
|
| 90 |
+
audio_file = io.BytesIO(response.content)
|
| 91 |
+
audio_file.name = f"audio.{extension}"
|
| 92 |
+
|
| 93 |
+
# Create OpenAI client and transcribe
|
| 94 |
+
client = OpenAI()
|
| 95 |
+
transcription = client.audio.transcriptions.create(
|
| 96 |
+
model="gpt-4o-transcribe", file=audio_file
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
return transcription.text
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
### set of functions for youtube video processing
|
| 103 |
+
def _pytube_buffer(url: str) -> Optional[io.BytesIO]:
|
| 104 |
+
try:
|
| 105 |
+
from pytube import YouTube
|
| 106 |
+
|
| 107 |
+
yt = YouTube(url)
|
| 108 |
+
stream = (
|
| 109 |
+
yt.streams.filter(progressive=True, file_extension="mp4")
|
| 110 |
+
.order_by("resolution")
|
| 111 |
+
.desc()
|
| 112 |
+
.first()
|
| 113 |
+
)
|
| 114 |
+
if stream is None: # no progressive stream
|
| 115 |
+
raise RuntimeError("No MP4 with audio found")
|
| 116 |
+
buf = io.BytesIO()
|
| 117 |
+
stream.stream_to_buffer(buf) # PyTube’s built-in helper
|
| 118 |
+
buf.seek(0)
|
| 119 |
+
return buf
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"[youtube_to_buffer] PyTube failed → {e}", file=sys.stderr)
|
| 122 |
+
return None # trigger fallback
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def _ytdlp_buffer(url: str) -> io.BytesIO:
|
| 126 |
+
"""
|
| 127 |
+
Return a BytesIO containing some MP4 video stream for `url`.
|
| 128 |
+
Works whether YouTube serves a progressive file or separate A/V.
|
| 129 |
+
"""
|
| 130 |
+
ydl_opts = {
|
| 131 |
+
"quiet": True,
|
| 132 |
+
"skip_download": True,
|
| 133 |
+
"format": "bestvideo[ext=mp4]/best[ext=mp4]/best",
|
| 134 |
+
}
|
| 135 |
+
with YoutubeDL(ydl_opts) as ydl:
|
| 136 |
+
info = ydl.extract_info(url, download=False)
|
| 137 |
+
if "entries" in info: # playlists
|
| 138 |
+
info = info["entries"][0]
|
| 139 |
+
|
| 140 |
+
if "url" in info:
|
| 141 |
+
video_urls = [info["url"]]
|
| 142 |
+
|
| 143 |
+
elif "requested_formats" in info:
|
| 144 |
+
video_urls = [
|
| 145 |
+
fmt["url"]
|
| 146 |
+
for fmt in info["requested_formats"]
|
| 147 |
+
if fmt.get("vcodec") != "none" # keep only video
|
| 148 |
+
]
|
| 149 |
+
if not video_urls:
|
| 150 |
+
raise RuntimeError("yt-dlp returned audio-only formats")
|
| 151 |
+
|
| 152 |
+
else:
|
| 153 |
+
raise RuntimeError("yt-dlp could not extract a stream URL")
|
| 154 |
+
|
| 155 |
+
buf = io.BytesIO()
|
| 156 |
+
for direct_url in video_urls:
|
| 157 |
+
with requests.get(direct_url, stream=True) as r:
|
| 158 |
+
r.raise_for_status()
|
| 159 |
+
for chunk in r.iter_content(chunk_size=1 << 16):
|
| 160 |
+
buf.write(chunk)
|
| 161 |
+
|
| 162 |
+
buf.seek(0)
|
| 163 |
+
return buf
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@functools.lru_cache(maxsize=8) # tiny cache so repeat calls are fast
|
| 167 |
+
def youtube_to_buffer(url: str) -> io.BytesIO:
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
Return a BytesIO containing a single progressive MP4
|
| 171 |
+
(H.264 + AAC) – the safest thing PyAV can open everywhere.
|
| 172 |
+
"""
|
| 173 |
+
ydl_opts = {
|
| 174 |
+
"quiet": True,
|
| 175 |
+
"skip_download": True,
|
| 176 |
+
# progressive (has both audio+video) • mp4 • h264
|
| 177 |
+
"format": (
|
| 178 |
+
"best[ext=mp4][vcodec^=avc1][acodec!=none]"
|
| 179 |
+
"/best[ext=mp4][acodec!=none]" # fallback: any prog-MP4
|
| 180 |
+
),
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
with YoutubeDL(ydl_opts) as ydl:
|
| 184 |
+
info = ydl.extract_info(url, download=False)
|
| 185 |
+
if "entries" in info: # playlists → first entry
|
| 186 |
+
info = info["entries"][0]
|
| 187 |
+
|
| 188 |
+
direct_url = info.get("url")
|
| 189 |
+
if not direct_url:
|
| 190 |
+
raise RuntimeError("yt-dlp could not find a progressive MP4 track")
|
| 191 |
+
|
| 192 |
+
# Stream it straight into RAM
|
| 193 |
+
buf = io.BytesIO()
|
| 194 |
+
with requests.get(direct_url, stream=True) as r:
|
| 195 |
+
r.raise_for_status()
|
| 196 |
+
for chunk in r.iter_content(chunk_size=1 << 17): # 128 kB
|
| 197 |
+
buf.write(chunk)
|
| 198 |
+
|
| 199 |
+
buf.seek(0)
|
| 200 |
+
return buf
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def sample_frames(video_bytes: io.BytesIO, n_frames: int = 6) -> List[Image.Image]:
|
| 204 |
+
"""Decode `n_frames` uniformly spaced RGB frames as PIL images."""
|
| 205 |
+
container = av.open(video_bytes, metadata_errors="ignore")
|
| 206 |
+
video = container.streams.video[0]
|
| 207 |
+
total = video.frames or 0
|
| 208 |
+
|
| 209 |
+
# If PyAV couldn't count frames (‐1), fall back to timestamp spacing
|
| 210 |
+
step = max(1, total // n_frames) if total else 30
|
| 211 |
+
|
| 212 |
+
frames: list[Image.Image] = []
|
| 213 |
+
for i, frame in enumerate(container.decode(video=0)):
|
| 214 |
+
if i % step == 0:
|
| 215 |
+
frames.append(frame.to_image())
|
| 216 |
+
if len(frames) >= n_frames:
|
| 217 |
+
break
|
| 218 |
+
container.close()
|
| 219 |
+
return frames
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def pil_to_data_url(img: Image.Image, quality: int = 80) -> str:
|
| 223 |
+
buf = io.BytesIO()
|
| 224 |
+
img.save(buf, format="JPEG", quality=quality, optimize=True)
|
| 225 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 226 |
+
return f"data:image/jpeg;base64,{b64}"
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def save_audio_stream_to_temp_wav_file(video_bytes: io.BytesIO) -> Optional[str]:
|
| 230 |
+
"""
|
| 231 |
+
Extracts the audio stream from video_bytes, saves it as a temporary WAV file,
|
| 232 |
+
and returns the path to the file.
|
| 233 |
+
Returns None if no audio stream is found or an error occurs.
|
| 234 |
+
"""
|
| 235 |
+
try:
|
| 236 |
+
video_bytes.seek(0) # Ensure buffer is at the beginning
|
| 237 |
+
input_container = av.open(video_bytes, metadata_errors="ignore")
|
| 238 |
+
|
| 239 |
+
if not input_container.streams.audio:
|
| 240 |
+
print("No audio streams found in the video.", file=sys.stderr)
|
| 241 |
+
return None
|
| 242 |
+
input_audio_stream = input_container.streams.audio[0]
|
| 243 |
+
|
| 244 |
+
# Create a temporary file with .wav suffix
|
| 245 |
+
# delete=False because we need to pass the path to another process (Whisper)
|
| 246 |
+
# and we will manually delete it later.
|
| 247 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 248 |
+
temp_audio_file_path = tmp_file.name
|
| 249 |
+
|
| 250 |
+
output_container = av.open(temp_audio_file_path, mode="w", format="wav")
|
| 251 |
+
|
| 252 |
+
# For WAV, a common codec is pcm_s16le (16-bit signed PCM).
|
| 253 |
+
# Use the input stream's sample rate.
|
| 254 |
+
# Determine channel layout (e.g., 'stereo', 'mono')
|
| 255 |
+
channel_layout = "stereo" # Default
|
| 256 |
+
if (
|
| 257 |
+
hasattr(input_audio_stream.codec_context, "layout")
|
| 258 |
+
and input_audio_stream.codec_context.layout
|
| 259 |
+
):
|
| 260 |
+
channel_layout = input_audio_stream.codec_context.layout.name
|
| 261 |
+
elif (
|
| 262 |
+
hasattr(input_audio_stream.codec_context, "channels")
|
| 263 |
+
and input_audio_stream.codec_context.channels == 1
|
| 264 |
+
):
|
| 265 |
+
channel_layout = "mono"
|
| 266 |
+
|
| 267 |
+
output_audio_stream = output_container.add_stream(
|
| 268 |
+
"pcm_s16le",
|
| 269 |
+
rate=input_audio_stream.codec_context.sample_rate,
|
| 270 |
+
layout=channel_layout,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
for frame in input_container.decode(input_audio_stream):
|
| 274 |
+
# PyAV decodes audio into AudioFrame objects.
|
| 275 |
+
# These frames need to be encoded by the output stream's codec.
|
| 276 |
+
for packet in output_audio_stream.encode(frame):
|
| 277 |
+
output_container.mux(packet)
|
| 278 |
+
|
| 279 |
+
# Flush any remaining frames from the encoder
|
| 280 |
+
for packet in output_audio_stream.encode():
|
| 281 |
+
output_container.mux(packet)
|
| 282 |
+
|
| 283 |
+
output_container.close()
|
| 284 |
+
input_container.close()
|
| 285 |
+
return temp_audio_file_path
|
| 286 |
+
|
| 287 |
+
except Exception as e:
|
| 288 |
+
print(f"Error extracting audio to temp WAV file: {e}", file=sys.stderr)
|
| 289 |
+
# Clean up if temp file path was assigned and file exists
|
| 290 |
+
if "temp_audio_file_path" in locals() and os.path.exists(temp_audio_file_path):
|
| 291 |
+
os.remove(temp_audio_file_path)
|
| 292 |
+
return None
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
@tool
|
| 296 |
+
def run_video(query: str, url: str) -> str:
|
| 297 |
+
"""
|
| 298 |
+
Get a YouTube video from url and return an answer to a natural-language query using the video.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
query (str): A natural-language question whose answer is expected to be found in the visual content of the video.
|
| 302 |
+
url (str): Fully qualified URL of the YouTube video to analyze.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
str: A response generated by the VQA model based on the provided video and question.
|
| 306 |
+
"""
|
| 307 |
+
n_frames = 4
|
| 308 |
+
buff = youtube_to_buffer(url)
|
| 309 |
+
if buff is None:
|
| 310 |
+
return "Error: Could not download or buffer the video."
|
| 311 |
+
|
| 312 |
+
# 1. Sample visual frames
|
| 313 |
+
frames = sample_frames(buff, n_frames=n_frames)
|
| 314 |
+
buff.seek(0) # Reset buffer pointer for audio extraction
|
| 315 |
+
|
| 316 |
+
# 2. Extract and Transcribe Audio
|
| 317 |
+
transcript = "[Audio could not be processed]"
|
| 318 |
+
audio_file_path = None
|
| 319 |
+
try:
|
| 320 |
+
audio_file_path = save_audio_stream_to_temp_wav_file(buff)
|
| 321 |
+
if audio_file_path:
|
| 322 |
+
with open(audio_file_path, "rb") as audio_data:
|
| 323 |
+
# Make sure you have the OpenAI client initialized, e.g., client = openai.OpenAI()
|
| 324 |
+
transcription_response = openai.audio.transcriptions.create(
|
| 325 |
+
model="gpt-4o-transcribe", file=audio_data
|
| 326 |
+
)
|
| 327 |
+
transcript = transcription_response.text
|
| 328 |
+
else:
|
| 329 |
+
transcript = "[No audio stream found or error during extraction]"
|
| 330 |
+
print(
|
| 331 |
+
"No audio file path returned, skipping transcription.", file=sys.stderr
|
| 332 |
+
)
|
| 333 |
+
except Exception as e:
|
| 334 |
+
print(f"Error during audio transcription: {e}", file=sys.stderr)
|
| 335 |
+
transcript = f"[Error during audio transcription: {e}]"
|
| 336 |
+
finally:
|
| 337 |
+
if audio_file_path and os.path.exists(audio_file_path):
|
| 338 |
+
os.remove(audio_file_path) # Clean up the temporary audio file
|
| 339 |
+
|
| 340 |
+
# 3. Prepare content for the AI model (text query, transcript, and images)
|
| 341 |
+
prompt_text = f"Original Query: {query}\n\nVideo Transcript:\n{transcript}\n\nKey Visual Frames (analyze these along with the transcript to answer the query):"
|
| 342 |
+
|
| 343 |
+
content = [{"type": "text", "text": prompt_text}]
|
| 344 |
+
|
| 345 |
+
for img in frames:
|
| 346 |
+
content.append(
|
| 347 |
+
{
|
| 348 |
+
"type": "image_url",
|
| 349 |
+
"image_url": {"url": pil_to_data_url(img)},
|
| 350 |
+
}
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# 4. Send to AI model
|
| 354 |
+
try:
|
| 355 |
+
resp = openai.chat.completions.create(
|
| 356 |
+
model=model_id,
|
| 357 |
+
messages=[{"role": "user", "content": content}],
|
| 358 |
+
temperature=0.1,
|
| 359 |
+
)
|
| 360 |
+
result = resp.choices[0].message.content.strip()
|
| 361 |
+
except Exception as e:
|
| 362 |
+
print(f"Error calling OpenAI API: {e}", file=sys.stderr)
|
| 363 |
+
result = f"[Error processing with AI model: {e}]"
|
| 364 |
+
|
| 365 |
+
return result
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
## Read video only, ignore audio
|
| 369 |
+
# @tool
|
| 370 |
+
# def run_video(query: str, url: str) -> str:
|
| 371 |
+
# """
|
| 372 |
+
# Get a YouTube video from url and return an answer to a natural-language query using the video.
|
| 373 |
+
|
| 374 |
+
# Args:
|
| 375 |
+
# query (str): A natural-language question whose answer is expected to be found in the visual content of the video.
|
| 376 |
+
# url (str): Fully qualified URL of the YouTube video to analyze.
|
| 377 |
+
|
| 378 |
+
# Returns:
|
| 379 |
+
# str: A response generated by the VQA model based on the provided video and question.
|
| 380 |
+
# """
|
| 381 |
+
# buff = youtube_to_buffer(url)
|
| 382 |
+
# n_frames = 8
|
| 383 |
+
# frames = sample_frames(buff, n_frames=n_frames)
|
| 384 |
+
|
| 385 |
+
# content = [{"type": "text", "text": query}] + [
|
| 386 |
+
# {
|
| 387 |
+
# "type": "image_url",
|
| 388 |
+
# "image_url": {"url": pil_to_data_url(img)},
|
| 389 |
+
# }
|
| 390 |
+
# for img in frames
|
| 391 |
+
# ]
|
| 392 |
+
|
| 393 |
+
# resp = openai.chat.completions.create(
|
| 394 |
+
# model="gpt-4.1-mini",
|
| 395 |
+
# messages=[{"role": "user", "content": content}],
|
| 396 |
+
# temperature=0.1,
|
| 397 |
+
# )
|
| 398 |
+
# return resp.choices[0].message.content.strip()
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# Helper functions for processing different file types
|
| 402 |
+
def process_image(response, filename, content_type):
|
| 403 |
+
"""Process image files - convert to base64 data URL for vision models"""
|
| 404 |
+
img_data = base64.b64encode(response.content).decode("utf-8")
|
| 405 |
+
data_url = f"data:{content_type};base64,{img_data}"
|
| 406 |
+
|
| 407 |
+
return {
|
| 408 |
+
"file_type": "image",
|
| 409 |
+
"filename": filename,
|
| 410 |
+
"content_type": content_type,
|
| 411 |
+
"data_url": data_url,
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def process_audio(response, filename, content_type):
|
| 416 |
+
"""Process audio files - either return data URL or save to temp file for processing"""
|
| 417 |
+
audio_data = base64.b64encode(response.content).decode("utf-8")
|
| 418 |
+
data_url = f"data:{content_type};base64,{audio_data}"
|
| 419 |
+
|
| 420 |
+
# For compatibility with audio processing tools, save to temp file
|
| 421 |
+
audio_file = io.BytesIO(response.content)
|
| 422 |
+
extension = os.path.splitext(filename)[1].lower() or ".mp3"
|
| 423 |
+
audio_file.name = f"audio{extension}" # Some libraries need filename
|
| 424 |
+
|
| 425 |
+
return {
|
| 426 |
+
"file_type": "audio",
|
| 427 |
+
"filename": filename,
|
| 428 |
+
"content_type": content_type,
|
| 429 |
+
"data_url": data_url,
|
| 430 |
+
"audio_buffer": audio_file, # Include buffer for processing
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
def process_video(response, filename, content_type):
|
| 435 |
+
"""Process video files - save to buffer and extract frames"""
|
| 436 |
+
video_buffer = io.BytesIO(response.content)
|
| 437 |
+
|
| 438 |
+
# Option to extract frames - similar to what run_video does
|
| 439 |
+
try:
|
| 440 |
+
frames = sample_frames(video_buffer, n_frames=4) # Reuse existing function
|
| 441 |
+
frame_urls = [pil_to_data_url(img) for img in frames]
|
| 442 |
+
frame_extraction_success = True
|
| 443 |
+
except Exception:
|
| 444 |
+
frame_urls = []
|
| 445 |
+
frame_extraction_success = False
|
| 446 |
+
|
| 447 |
+
return {
|
| 448 |
+
"file_type": "video",
|
| 449 |
+
"filename": filename,
|
| 450 |
+
"content_type": content_type,
|
| 451 |
+
"video_buffer": video_buffer,
|
| 452 |
+
"frame_urls": frame_urls,
|
| 453 |
+
"frames_extracted": frame_extraction_success,
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def process_tabular(response, filename, content_type):
|
| 458 |
+
"""Process spreadsheet files using pandas"""
|
| 459 |
+
excel_buffer = io.BytesIO(response.content)
|
| 460 |
+
|
| 461 |
+
try:
|
| 462 |
+
# Determine format based on extension
|
| 463 |
+
if filename.lower().endswith(".csv"):
|
| 464 |
+
df = pd.read_csv(excel_buffer)
|
| 465 |
+
else: # Excel formats
|
| 466 |
+
df = pd.read_excel(excel_buffer)
|
| 467 |
+
|
| 468 |
+
return {
|
| 469 |
+
"file_type": "tabular",
|
| 470 |
+
"filename": filename,
|
| 471 |
+
"content_type": content_type,
|
| 472 |
+
"data": df.to_dict(orient="records"),
|
| 473 |
+
"columns": df.columns.tolist(),
|
| 474 |
+
"shape": df.shape,
|
| 475 |
+
}
|
| 476 |
+
except Exception as e:
|
| 477 |
+
# Fallback if parsing fails
|
| 478 |
+
return {
|
| 479 |
+
"file_type": "tabular",
|
| 480 |
+
"filename": filename,
|
| 481 |
+
"content_type": content_type,
|
| 482 |
+
"error": f"Failed to parse tabular data: {e}",
|
| 483 |
+
"raw_data": base64.b64encode(response.content).decode("utf-8"),
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def process_text(response, filename, content_type):
|
| 488 |
+
"""Process text files (code, plain text, etc.)"""
|
| 489 |
+
try:
|
| 490 |
+
text_content = response.text
|
| 491 |
+
return {
|
| 492 |
+
"file_type": "text",
|
| 493 |
+
"filename": filename,
|
| 494 |
+
"content_type": content_type,
|
| 495 |
+
"content": text_content,
|
| 496 |
+
"extension": os.path.splitext(filename)[
|
| 497 |
+
1
|
| 498 |
+
], # Useful for syntax highlighting
|
| 499 |
+
}
|
| 500 |
+
except Exception as e:
|
| 501 |
+
return {
|
| 502 |
+
"file_type": "text",
|
| 503 |
+
"filename": filename,
|
| 504 |
+
"content_type": content_type,
|
| 505 |
+
"error": f"Failed to decode text: {e}",
|
| 506 |
+
"raw_data": base64.b64encode(response.content).decode("utf-8"),
|
| 507 |
+
}
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def process_json(response, filename, content_type):
|
| 511 |
+
"""Process JSON data"""
|
| 512 |
+
try:
|
| 513 |
+
json_data = response.json()
|
| 514 |
+
return {
|
| 515 |
+
"file_type": "json",
|
| 516 |
+
"filename": filename,
|
| 517 |
+
"content_type": content_type,
|
| 518 |
+
"data": json_data,
|
| 519 |
+
}
|
| 520 |
+
except Exception:
|
| 521 |
+
# Try as text if JSON parsing fails
|
| 522 |
+
return process_text(response, filename, content_type)
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
def process_pdf(response, filename, content_type):
|
| 526 |
+
"""Process PDF files - return as binary with metadata"""
|
| 527 |
+
# Simple version - just return binary for now
|
| 528 |
+
# Could be enhanced with PDF text extraction libraries
|
| 529 |
+
pdf_data = base64.b64encode(response.content).decode("utf-8")
|
| 530 |
+
|
| 531 |
+
return {
|
| 532 |
+
"file_type": "pdf",
|
| 533 |
+
"filename": filename,
|
| 534 |
+
"content_type": content_type,
|
| 535 |
+
"data": pdf_data,
|
| 536 |
+
}
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def process_binary(response, filename, content_type):
|
| 540 |
+
"""Process other binary files (fallback handler)"""
|
| 541 |
+
binary_data = base64.b64encode(response.content).decode("utf-8")
|
| 542 |
+
|
| 543 |
+
return {
|
| 544 |
+
"file_type": "binary",
|
| 545 |
+
"filename": filename,
|
| 546 |
+
"content_type": content_type,
|
| 547 |
+
"data": binary_data,
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
@tool
|
| 552 |
+
def fetch_task_files(task_id: str) -> Dict[str, Any]:
|
| 553 |
+
"""
|
| 554 |
+
Download files associated with a specific task from the API.
|
| 555 |
+
|
| 556 |
+
Args:
|
| 557 |
+
task_id (str): The Task-ID of the task to download files for.
|
| 558 |
+
|
| 559 |
+
Returns:
|
| 560 |
+
dict: A dictionary containing file information and data in appropriate format for the file type
|
| 561 |
+
"""
|
| 562 |
+
api_base_url: str = "https://agents-course-unit4-scoring.hf.space"
|
| 563 |
+
files_url = f"{api_base_url}/files/{task_id}"
|
| 564 |
+
|
| 565 |
+
try:
|
| 566 |
+
response = requests.get(files_url, timeout=15)
|
| 567 |
+
response.raise_for_status()
|
| 568 |
+
|
| 569 |
+
# Extract metadata
|
| 570 |
+
content_type = response.headers.get("Content-Type", "").lower()
|
| 571 |
+
filename = response.headers.get("content-disposition", "")
|
| 572 |
+
if "filename=" in filename:
|
| 573 |
+
filename = filename.split("filename=")[-1].strip('"')
|
| 574 |
+
else:
|
| 575 |
+
filename = f"{task_id}.bin" # Default filename
|
| 576 |
+
|
| 577 |
+
print(f"Received file: {filename}, type: {content_type}")
|
| 578 |
+
|
| 579 |
+
# Route to appropriate helper based on content type or file extension
|
| 580 |
+
if "image/" in content_type or any(
|
| 581 |
+
filename.lower().endswith(ext) for ext in [".png", ".jpg", ".jpeg", ".gif"]
|
| 582 |
+
):
|
| 583 |
+
return process_image(response, filename, content_type)
|
| 584 |
+
|
| 585 |
+
elif "audio/" in content_type or any(
|
| 586 |
+
filename.lower().endswith(ext) for ext in [".mp3", ".wav", ".ogg"]
|
| 587 |
+
):
|
| 588 |
+
return process_audio(response, filename, content_type)
|
| 589 |
+
|
| 590 |
+
elif "video/" in content_type or any(
|
| 591 |
+
filename.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov"]
|
| 592 |
+
):
|
| 593 |
+
return process_video(response, filename, content_type)
|
| 594 |
+
|
| 595 |
+
elif (
|
| 596 |
+
"spreadsheet" in content_type
|
| 597 |
+
or "excel" in content_type
|
| 598 |
+
or any(filename.lower().endswith(ext) for ext in [".xlsx", ".xls", ".csv"])
|
| 599 |
+
):
|
| 600 |
+
return process_tabular(response, filename, content_type)
|
| 601 |
+
|
| 602 |
+
elif (
|
| 603 |
+
"text/" in content_type
|
| 604 |
+
or "code" in content_type
|
| 605 |
+
or any(
|
| 606 |
+
filename.lower().endswith(ext)
|
| 607 |
+
for ext in [".txt", ".py", ".js", ".html", ".md"]
|
| 608 |
+
)
|
| 609 |
+
):
|
| 610 |
+
return process_text(response, filename, content_type)
|
| 611 |
+
|
| 612 |
+
elif "application/json" in content_type or filename.lower().endswith(".json"):
|
| 613 |
+
return process_json(response, filename, content_type)
|
| 614 |
+
|
| 615 |
+
elif "application/pdf" in content_type or filename.lower().endswith(".pdf"):
|
| 616 |
+
return process_pdf(response, filename, content_type)
|
| 617 |
+
|
| 618 |
+
else:
|
| 619 |
+
# Default fallback for binary files
|
| 620 |
+
return process_binary(response, filename, content_type)
|
| 621 |
+
|
| 622 |
+
except requests.exceptions.RequestException as e:
|
| 623 |
+
print(f"Error fetching files for task {task_id}: {e}")
|
| 624 |
+
return {"error": f"Error fetching files: {e}"}
|
| 625 |
+
except Exception as e:
|
| 626 |
+
print(f"An unexpected error occurred fetching files for task {task_id}: {e}")
|
| 627 |
+
return {"error": f"An unexpected error occurred: {e}"}
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
@tool
|
| 631 |
+
def search_wikipedia(query: str) -> str:
|
| 632 |
+
"""
|
| 633 |
+
get the contents of wikipedia page retrieved by search query.
|
| 634 |
+
|
| 635 |
+
Args:
|
| 636 |
+
query (str): A search term to search within wikipedia. Ideally it should be one word or a group of few words.
|
| 637 |
+
|
| 638 |
+
Returns:
|
| 639 |
+
str: The text content of wikipedia page
|
| 640 |
+
"""
|
| 641 |
+
get_wiki = wikipediaapi.Wikipedia(
|
| 642 |
+
language="en",
|
| 643 |
+
user_agent="test_tokki",
|
| 644 |
+
extract_format=wikipediaapi.ExtractFormat.WIKI,
|
| 645 |
+
)
|
| 646 |
+
page_content = get_wiki.page(query)
|
| 647 |
+
text_content = page_content.text
|
| 648 |
+
|
| 649 |
+
cutoff = 25000
|
| 650 |
+
text_content = " ".join(text_content.split(" ")[:cutoff])
|
| 651 |
+
return text_content
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
if __name__ == "__main__":
|
| 655 |
+
# Simple test for fetch_task_files
|
| 656 |
+
task_ids = [
|
| 657 |
+
"cca530fc-4052-43b2-b130-b30968d8aa44",
|
| 658 |
+
"99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3",
|
| 659 |
+
"7bd855d8-463d-4ed5-93ca-5fe35145f733",
|
| 660 |
+
]
|
| 661 |
+
for task_id in task_ids:
|
| 662 |
+
print(
|
| 663 |
+
"=" * 20
|
| 664 |
+
+ " "
|
| 665 |
+
+ f"Testing fetch_task_files with task_id: {task_id}"
|
| 666 |
+
+ " "
|
| 667 |
+
+ "=" * 20
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
result = fetch_task_files(task_id)
|
| 671 |
+
print(f"File type: {result.get('file_type')}")
|
| 672 |
+
print(f"Filename: {result.get('filename')}")
|