Spaces:
Starting
Starting
| import os | |
| import tempfile | |
| from typing import Any | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import trimesh | |
| from transparent_background import Remover | |
| from diffusers import DiffusionPipeline | |
| # Import and setup SPAR3D | |
| os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") | |
| import spar3d.utils as spar3d_utils | |
| from spar3d.system import SPAR3D | |
| # Constants | |
| COND_WIDTH = 512 | |
| COND_HEIGHT = 512 | |
| COND_DISTANCE = 2.2 | |
| COND_FOVY = 0.591627 | |
| BACKGROUND_COLOR = [0.5, 0.5, 0.5] | |
| # Initialize models | |
| device = spar3d_utils.get_device() | |
| bg_remover = Remover() | |
| spar3d_model = SPAR3D.from_pretrained( | |
| "stabilityai/stable-point-aware-3d", | |
| config_name="config.yaml", | |
| weight_name="model.safetensors" | |
| ).eval().to(device) | |
| # Initialize FLUX model | |
| dtype = torch.bfloat16 | |
| flux_pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", | |
| torch_dtype=dtype | |
| ).to(device) | |
| # Initialize camera parameters | |
| c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) | |
| intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( | |
| COND_FOVY, COND_HEIGHT, COND_WIDTH | |
| ) | |
| def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image: | |
| """Create an RGBA image from RGB image and optional mask.""" | |
| rgba_image = rgb_image.convert('RGBA') | |
| if mask is not None: | |
| # Convert mask to alpha channel format | |
| alpha = Image.fromarray((mask * 255).astype(np.uint8)) | |
| rgba_image.putalpha(alpha) | |
| return rgba_image | |
| def create_batch(input_image: Image.Image) -> dict[str, Any]: | |
| """Prepare image batch for model input.""" | |
| # Ensure input is RGBA | |
| if input_image.mode != 'RGBA': | |
| input_image = input_image.convert('RGBA') | |
| # Resize and convert to numpy array | |
| resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT)) | |
| img_array = np.array(resized_image).astype(np.float32) / 255.0 | |
| # Split into RGB and alpha | |
| rgb = img_array[..., :3] | |
| alpha = img_array[..., 3:4] | |
| # Convert to tensors | |
| rgb_tensor = torch.from_numpy(rgb).float() | |
| alpha_tensor = torch.from_numpy(alpha).float() | |
| # Create background blend | |
| bg_tensor = torch.tensor(BACKGROUND_COLOR)[None, None, :] | |
| rgb_cond = torch.lerp(bg_tensor, rgb_tensor, alpha_tensor) | |
| batch = { | |
| "rgb_cond": rgb_cond.unsqueeze(0), | |
| "mask_cond": alpha_tensor.unsqueeze(0), | |
| "c2w_cond": c2w_cond.unsqueeze(0), | |
| "intrinsic_cond": intrinsic.unsqueeze(0), | |
| "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), | |
| } | |
| return batch | |
| def generate_and_process_3d(prompt: str, seed: int = 42, width: int = 1024, height: int = 1024) -> tuple[str | None, Image.Image | None]: | |
| """Generate image from prompt and convert to 3D model.""" | |
| try: | |
| # Generate image using FLUX | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| generated_image = flux_pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=4, | |
| generator=generator, | |
| guidance_scale=0.0 | |
| ).images[0] | |
| # Process the generated image | |
| rgb_image = generated_image.convert('RGB') | |
| # Remove background | |
| no_bg_image = bg_remover.process(rgb_image) | |
| # Convert to numpy array to extract mask | |
| no_bg_array = np.array(no_bg_image) | |
| mask = (no_bg_array.sum(axis=2) > 0).astype(np.float32) | |
| # Create RGBA image | |
| rgba_image = create_rgba_image(rgb_image, mask) | |
| # Auto crop with foreground | |
| processed_image = spar3d_utils.foreground_crop( | |
| rgba_image, | |
| crop_ratio=1.3, | |
| newsize=(COND_WIDTH, COND_HEIGHT), | |
| no_crop=False | |
| ) | |
| # Prepare batch for 3D generation | |
| batch = create_batch(processed_image) | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| # Generate mesh | |
| with torch.no_grad(): | |
| with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): | |
| trimesh_mesh, _ = spar3d_model.generate_mesh( | |
| batch, | |
| 1024, # texture_resolution | |
| remesh="none", | |
| vertex_count=-1, | |
| estimate_illumination=True | |
| ) | |
| trimesh_mesh = trimesh_mesh[0] | |
| # Export to GLB | |
| temp_dir = tempfile.mkdtemp() | |
| output_path = os.path.join(temp_dir, 'output.glb') | |
| trimesh_mesh.export(output_path, file_type="glb", include_normals=True) | |
| return output_path, generated_image | |
| except Exception as e: | |
| print(f"Error during generation: {str(e)}") | |
| return None, None | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=generate_and_process_3d, | |
| inputs=[ | |
| gr.Text( | |
| label="Enter your prompt", | |
| placeholder="Describe what you want to generate..." | |
| ), | |
| gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=np.iinfo(np.int32).max, | |
| step=1, | |
| value=42 | |
| ), | |
| gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024 | |
| ), | |
| gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=32, | |
| value=1024 | |
| ) | |
| ], | |
| outputs=[ | |
| gr.File( | |
| label="Download 3D Model", | |
| file_types=[".glb"] | |
| ), | |
| gr.Image( | |
| label="Generated Image", | |
| type="pil" | |
| ) | |
| ], | |
| title="Text to 3D Model Generator", | |
| description="Enter a text prompt to generate an image that will be converted into a 3D model", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch() |