Spaces:
Paused
Paused
| import os | |
| import base64 | |
| import tempfile | |
| from typing import Any | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import trimesh | |
| from transparent_background import Remover | |
| # Import and setup SPAR3D | |
| os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") | |
| import spar3d.utils as spar3d_utils | |
| from spar3d.system import SPAR3D | |
| # Constants | |
| COND_WIDTH = 512 | |
| COND_HEIGHT = 512 | |
| COND_DISTANCE = 2.2 | |
| COND_FOVY = 0.591627 | |
| BACKGROUND_COLOR = [0.5, 0.5, 0.5] | |
| # Initialize models | |
| device = spar3d_utils.get_device() | |
| bg_remover = Remover() | |
| model = SPAR3D.from_pretrained( | |
| "stabilityai/stable-point-aware-3d", | |
| config_name="config.yaml", | |
| weight_name="model.safetensors" | |
| ).eval().to(device) | |
| # Initialize camera parameters | |
| c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) | |
| intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( | |
| COND_FOVY, COND_HEIGHT, COND_WIDTH | |
| ) | |
| def create_batch(input_image: Image) -> dict[str, Any]: | |
| """Prepare image batch for model input.""" | |
| img_cond = ( | |
| torch.from_numpy( | |
| np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32) | |
| / 255.0 | |
| ) | |
| .float() | |
| .clip(0, 1) | |
| ) | |
| mask_cond = img_cond[:, :, -1:] | |
| rgb_cond = torch.lerp( | |
| torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond | |
| ) | |
| batch = { | |
| "rgb_cond": rgb_cond.unsqueeze(0), | |
| "mask_cond": mask_cond.unsqueeze(0), | |
| "c2w_cond": c2w_cond.unsqueeze(0), | |
| "intrinsic_cond": intrinsic.unsqueeze(0), | |
| "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), | |
| } | |
| return batch | |
| def process_image(image_base64: str) -> str: | |
| """Process image and return GLB as base64.""" | |
| try: | |
| # Decode base64 image | |
| image_data = base64.b64decode(image_base64) | |
| input_image = Image.open(tempfile.SpooledTemporaryFile(suffix='.png')) | |
| input_image.frombytes(image_data) | |
| # Remove background if needed | |
| if input_image.mode != 'RGBA': | |
| input_image = bg_remover.process(input_image.convert("RGB")) | |
| # Auto crop | |
| input_image = spar3d_utils.foreground_crop( | |
| input_image, | |
| crop_ratio=1.3, # Default padding ratio | |
| newsize=(COND_WIDTH, COND_HEIGHT), | |
| no_crop=False | |
| ) | |
| # Prepare batch | |
| batch = create_batch(input_image) | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| # Generate mesh | |
| with torch.no_grad(): | |
| with torch.autocast(device_type=device, dtype=torch.bfloat16) if "cuda" in device else nullcontext(): | |
| trimesh_mesh, _ = model.generate_mesh( | |
| batch, | |
| texture_resolution=1024, | |
| remesh="none", | |
| vertex_count=-1, | |
| estimate_illumination=False | |
| ) | |
| trimesh_mesh = trimesh_mesh[0] | |
| # Export to GLB | |
| temp_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
| trimesh_mesh.export(temp_file.name, file_type="glb", include_normals=True) | |
| # Convert to base64 | |
| with open(temp_file.name, 'rb') as f: | |
| glb_base64 = base64.b64encode(f.read()).decode('utf-8') | |
| # Cleanup | |
| os.unlink(temp_file.name) | |
| return glb_base64 | |
| except Exception as e: | |
| return str(e) | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=process_image, | |
| inputs=gr.Text(label="Base64 Image"), | |
| outputs=gr.Text(label="Base64 GLB"), | |
| title="SPAR3D Image to GLB Converter", | |
| description="Upload a base64-encoded image and get back a base64-encoded GLB file" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=False) |