Spaces:
Starting
Starting
| import os | |
| import tempfile | |
| from typing import Any | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import trimesh | |
| from transparent_background import Remover | |
| from diffusers import DiffusionPipeline | |
| # Import and setup SPAR3D | |
| os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper") | |
| import spar3d.utils as spar3d_utils | |
| from spar3d.system import SPAR3D | |
| # Constants | |
| COND_WIDTH = 512 | |
| COND_HEIGHT = 512 | |
| COND_DISTANCE = 2.2 | |
| COND_FOVY = 0.591627 | |
| BACKGROUND_COLOR = [0.5, 0.5, 0.5] | |
| # Initialize models | |
| device = spar3d_utils.get_device() | |
| bg_remover = Remover() | |
| spar3d_model = SPAR3D.from_pretrained( | |
| "stabilityai/stable-point-aware-3d", | |
| config_name="config.yaml", | |
| weight_name="model.safetensors" | |
| ).eval().to(device) | |
| # Initialize FLUX model | |
| dtype = torch.bfloat16 | |
| flux_pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", | |
| torch_dtype=dtype | |
| ).to(device) | |
| # Initialize camera parameters | |
| c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE) | |
| intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad( | |
| COND_FOVY, COND_HEIGHT, COND_WIDTH | |
| ) | |
| def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image: | |
| """Create an RGBA image from RGB image and optional mask.""" | |
| rgba_image = rgb_image.convert('RGBA') | |
| if mask is not None: | |
| # Ensure mask is 2D before converting to alpha | |
| if len(mask.shape) > 2: | |
| mask = mask.squeeze() | |
| alpha = Image.fromarray((mask * 255).astype(np.uint8)) | |
| rgba_image.putalpha(alpha) | |
| return rgba_image | |
| def create_batch(input_image: Image.Image) -> dict[str, Any]: | |
| """Prepare image batch for model input.""" | |
| # Resize and convert input image to numpy array | |
| resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT)) | |
| img_array = np.array(resized_image).astype(np.float32) / 255.0 | |
| # Extract RGB and alpha channels | |
| if img_array.shape[-1] == 4: # RGBA | |
| rgb = img_array[..., :3] | |
| mask = img_array[..., 3:4] | |
| else: # RGB | |
| rgb = img_array | |
| mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32) | |
| # Convert to tensors while keeping channel-last format | |
| rgb = torch.from_numpy(rgb).float() # [H, W, 3] | |
| mask = torch.from_numpy(mask).float() # [H, W, 1] | |
| # Create background blend (match channel-last format) | |
| bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3] | |
| # Blend RGB with background using mask (all in channel-last format) | |
| rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3] | |
| # Move channels to correct dimension and add batch dimension | |
| # Important: For SPAR3D image tokenizer, we need [B, H, W, C] format | |
| rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3] | |
| mask = mask.unsqueeze(0) # [1, H, W, 1] | |
| # Create the batch dictionary | |
| batch = { | |
| "rgb_cond": rgb_cond, # [1, H, W, 3] | |
| "mask_cond": mask, # [1, H, W, 1] | |
| "c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4] | |
| "intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3] | |
| "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3] | |
| } | |
| for k, v in batch.items(): | |
| print(f"[debug] {k} final shape:", v.shape) | |
| return batch | |
| def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"): | |
| """Process batch through model and generate point cloud.""" | |
| batch_size = batch["rgb_cond"].shape[0] | |
| assert batch_size == 1, f"Expected batch size 1, got {batch_size}" | |
| # Generate point cloud tokens | |
| try: | |
| cond_tokens = system.forward_pdiff_cond(batch) | |
| except Exception as e: | |
| print("\n[ERROR] Failed in forward_pdiff_cond:") | |
| print(e) | |
| print("\nInput tensor properties:") | |
| print("rgb_cond dtype:", batch["rgb_cond"].dtype) | |
| print("rgb_cond device:", batch["rgb_cond"].device) | |
| print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad) | |
| raise | |
| # Sample points | |
| sample_iter = system.sampler.sample_batch_progressive( | |
| batch_size, | |
| cond_tokens, | |
| guidance_scale=guidance_scale, | |
| device=device | |
| ) | |
| # Get final samples | |
| for x in sample_iter: | |
| samples = x["xstart"] | |
| pc_cond = samples.permute(0, 2, 1).float() | |
| # Normalize point cloud | |
| pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond) | |
| # Subsample to 512 points | |
| pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]] | |
| return pc_cond | |
| def generate_and_process_3d(prompt: str) -> tuple[str | None, Image.Image | None]: | |
| """Generate image from prompt and convert to 3D model.""" | |
| width: int = 1024 | |
| height: int = 1024 | |
| # Generate random seed | |
| seed = np.random.randint(0, np.iinfo(np.int32).max) | |
| try: | |
| # Set random seeds | |
| torch.manual_seed(seed) | |
| np.random.seed(seed) | |
| # Generate image using FLUX | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| generated_image = flux_pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=4, | |
| generator=generator, | |
| guidance_scale=0.0 | |
| ).images[0] | |
| rgb_image = generated_image.convert('RGB') | |
| # bg_remover returns a PIL Image already, no need to convert | |
| no_bg_image = bg_remover.process(rgb_image) | |
| print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}") | |
| # Convert to RGBA if not already | |
| rgba_image = no_bg_image.convert('RGBA') | |
| print(f"[debug] rgba_image mode: {rgba_image.mode}") | |
| processed_image = spar3d_utils.foreground_crop( | |
| rgba_image, | |
| crop_ratio=1.3, | |
| newsize=(COND_WIDTH, COND_HEIGHT), | |
| no_crop=False | |
| ) | |
| # Show the processed image alpha channel for debugging | |
| alpha = np.array(processed_image)[:, :, 3] | |
| print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}") | |
| # Prepare batch for processing | |
| batch = create_batch(processed_image) | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| # Generate point cloud | |
| pc_cond = forward_model( | |
| batch, | |
| spar3d_model, | |
| guidance_scale=3.0, | |
| seed=seed, | |
| device=device | |
| ) | |
| batch["pc_cond"] = pc_cond | |
| # Generate mesh | |
| with torch.no_grad(): | |
| with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16): | |
| trimesh_mesh, _ = spar3d_model.generate_mesh( | |
| batch, | |
| 1024, # texture_resolution | |
| remesh="none", | |
| vertex_count=-1, | |
| estimate_illumination=True | |
| ) | |
| trimesh_mesh = trimesh_mesh[0] | |
| # Export to GLB | |
| temp_dir = tempfile.mkdtemp() | |
| output_path = os.path.join(temp_dir, 'output.glb') | |
| trimesh_mesh.export(output_path, file_type="glb", include_normals=True) | |
| return output_path | |
| except Exception as e: | |
| print(f"Error during generation: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return None | |
| # Create Gradio app using Blocks | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Text to 3D") | |
| gr.Markdown("This space is based on [Stable Point-Aware 3D](https://huggingface.co/spaces/stabilityai/stable-point-aware-3d) by Stability AI.") | |
| with gr.Row(): | |
| prompt_input = gr.Text( | |
| label="Enter your prompt", | |
| placeholder="eg. isometric 3D castle" | |
| ) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| with gr.Row(): | |
| model_output = gr.Model3D( | |
| label="Generated .GLB model", | |
| clear_color=[0.0, 0.0, 0.0, 0.0], | |
| ) | |
| # Event handler | |
| generate_btn.click( | |
| fn=generate_and_process_3d, | |
| inputs=[prompt_input], | |
| outputs=[model_output], | |
| api_name="generate" | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch() |